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Abstract

This research presents the analysis and verification of a stripline designed by

Air Force Research Laboratory for use in measuring the electrical properties of mate-

rials at low frequencies and high temperature. It is designed to operate in the TEM

mode up to 4 Ghz and have a characteristic impedance of 50 ohms. A full wave

base method is used to analyze the structure. The parallel plate waveguide dyadic

Green’s function is developed for a current immersed in a PEC parallel plate environ-

ment. It is used to formulate a pair of coupled electric field integral equations (CIE).

These CIEs are solved through a computationally efficient entire-domain method of

moments (MoM) technique. Numerical efficiency is gained through employing Cheb-

syshev polynomials of the first and second kind as testing and expansion functions.

These efficient expansion and testing function sets require as few as three expansions

for accurate results. Further numerical efficiencies are gained by taking advantage

of transverse electromagnetic propagation properties to develop a specialized TEM

integral equation reducing the number of integrations performed from 2N2+N to N2.

An expression for the characteristic impedance is developed using the MoM results.

The characteristic impedance is calculated for various degrees of center conductor

miss alignment.

iv



Acknowledgements

It would not have been possible for me to complete this thesis without the support

of many people. I would first like to thank the members of my thesis committee for

their time and insight. In addition to those who guided me academically, the support

of my friends and family has been equally important. Special thanks go to my wife

for always pretending to be interested in the research I was conducting.

James H. Crane, II

v



Table of Contents
Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation for Stripline Use . . . . . . . . . . . . . . . . 1

1.3 Motivation for Investigating Center Conductor Misalign-
ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . 4

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Transmission Line Theory . . . . . . . . . . . . . . . . . 5

2.2 Stripline . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Asymmetric Striplines. . . . . . . . . . . . . . . 8

2.3 Stripline Design . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Material Measurements. . . . . . . . . . . . . . 10
2.4.2 Automotive Industries Use of the Tri-Plate. . . 11

2.5 Efforts to Optimize Striplines . . . . . . . . . . . . . . . 12

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 13

III. Parallel−Plate Green’s Function Development . . . . . . . . . . . 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Vector Potential Boundary Conditions . . . . . . . . . . 14

3.3 Solution of the Vector Potential Wave Equation . . . . . 16

3.3.1 Principal Solution. . . . . . . . . . . . . . . . . 17

3.3.2 Reflected Solution. . . . . . . . . . . . . . . . . 22
3.4 Applying Boundary conditions to Total Solution . . . . . 22

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



Page

IV. Electric Field Integral Equations . . . . . . . . . . . . . . . . . . 26

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Integral Equation Formulation for PEC Stripline . . . . 26

4.3 TEM Specialization of a PEC Stripline . . . . . . . . . . 30

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 31

V. Method of Moments . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 MoM Solution of Coupled EFIE’s for PEC Strip . . . . . 32

5.2.1 General MoM Solution. . . . . . . . . . . . . . . 32
5.2.2 Galerkin Method Using Chebsyshev Polynomials

of the First Kind. . . . . . . . . . . . . . . . . . 36
5.2.3 Galerkin Method Using Chebsyshev Polynomials

of the First/Second Kind. . . . . . . . . . . . . 38

5.3 MoM Solution of the Integral Equation for Specialized
TEM Case . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 46

VI. Characteristic Impedance . . . . . . . . . . . . . . . . . . . . . . 47

6.1 Derivation of Full Wave Expression for the Characteristic
Impedance of a Stripline . . . . . . . . . . . . . . . . . . 47

6.2 Validation of AFRL’s Design . . . . . . . . . . . . . . . 50

6.2.1 Physical Interpretation. . . . . . . . . . . . . . . 51

6.3 Effects of Center Conductor Misalignment . . . . . . . . 52

6.4 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 54

VII. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . 60

Appendix A. Chebsyshev Polynomials . . . . . . . . . . . . . . . . . . 62

A.1 Preliminary Expressions . . . . . . . . . . . . . . . . . . 63

A.2 Integrals with Chebsyshev Polynomials . . . . . . . . . . 64

A.3 Asymptotic Form of Integrals Involving Tn(x) and Un(x) 64

A.4 Evaluation of Integrals Encountered in Chapter 5 . . . . 64

A.4.1 Evaluating fmx(ξ) and gnx(ξ) of The First Expan-
sion/Test Function Set . . . . . . . . . . . . . . 65

A.4.2 Evaluating fmz(ξ) and gnz(ξ) of The First Expan-
sion/Test Function Set . . . . . . . . . . . . . . 67

Appendix B. Matlab Code . . . . . . . . . . . . . . . . . . . . . . . . 69

vii



Page

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

viii



List of Figures
Figure Page

1.1. Example of center conductor sag. . . . . . . . . . . . . . . . . . 3

2.1. Model for transmission line using circuit components . . . . . . 6

2.2. Stripline cross section with misaligned center conductor. . . . . 8

3.1. Problem Geometry: General 3D Current ( ~J) Immersed in Par-

allel Plate Waveguide . . . . . . . . . . . . . . . . . . . . . . . 15

3.2. Singularities of the Integrand of Equation (3.17) in Complex η

Plane. Used with Author’s Permission . . . . . . . . . . . . . . 18

3.3. Upper-Half Plane Closure used to integrate case y > y′ . . . . . 20

3.4. Elements of Green’s Function . . . . . . . . . . . . . . . . . . . 24

5.1. Cross Sectional Currents Found on a Perfectly Conducting Cen-

ter Conductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2. Convergence Achieved Through Special Algorithm That Selected

Optimal Upper Limit. . . . . . . . . . . . . . . . . . . . . . . . 44

5.3. Currents for TEM case. . . . . . . . . . . . . . . . . . . . . . . 45

5.4. Comparison of both MoM solutions. . . . . . . . . . . . . . . . 46

6.1. The Effects of Center Conductor Width on Characteristic Impedance 50

6.2. The Effects of Center Conductor Misalignment on Characteristic

Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3. Effects of Center Conductor Misalignment of Electric Field. . . 56

6.4. Microwave Studio CAD Model and Simulation Results . . . . . 57

6.5. The Effects of Number of Expansion Terms (N) on Characteristic

Impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ix



List of Tables
Table Page

2.1. Summary of Conductor Properties. . . . . . . . . . . . . . . . . 9

7.1. Conductivity of High Temperature Alloys. . . . . . . . . . . . . 61

x



List of Abbreviations
Abbreviation Page

PEC Perfect Electric Conductor . . . . . . . . . . . . . . . . . . 7

TRL Thru Reflect Line . . . . . . . . . . . . . . . . . . . . . . . 11

NRW Nicolson Ross Wier algorithm . . . . . . . . . . . . . . . . 11

BCs Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 14

UHPC Upper-Half Plane Closure . . . . . . . . . . . . . . . . . . 19

LHPC Lower-Half Plane Closure . . . . . . . . . . . . . . . . . . 19

EFIE Electric Field Integral Equation . . . . . . . . . . . . . . . 26

MoM Method of Moments . . . . . . . . . . . . . . . . . . . . . 32

CIE Coupled Integral Equation . . . . . . . . . . . . . . . . . . 32

xi



Full-Wave Based Validation

of Stripline Field Applicator

for Low Frequency

Material Measurements

I. Introduction

1.1 Problem Statement

The objectives of this research are to validate the design parameters of a high

temperature/low frequency stripline apparatus developed for the Air Force Research

Laboratory using a full-wave analysis and to predict the effects of center conduc-

tor misalignment on the characteristic impedance of the apparatus used in material

characterization measurements.

1.2 Motivation for Stripline Use

Current material testing at low frequencies requires waveguides having large

cross-sectional dimensions (e.g. four feet wide by two feet high). Fabricating sam-

ples this large is costly and exceedingly difficult. In addition, obtaining an oven to

heat this waveguide/sample fixture would require enormous space and power, mak-

ing it virtually impossible to implement. The proposed stripline design would have

cross-sectional dimensions of approximately five inches by two inches, thus samples

are easily fabricated and pre-existing furnaces can easily be used. Thus, the stripline

fixture will, for the first time, give Air Force Research Laboratory the capability of

measuring shielding material at low frequencies and high temperatures. AFRL’s ap-

proximate design specifications stipulate that a 50 ohm stripline can be realized if

ground plane spacing is approximately 3.5 cm and center conductor width is approxi-

mately 5 cm. A full-wave analysis will be developed in this research to more precisely

validate the design.
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1.3 Motivation for Investigating Center Conductor Misalignment

Striplines used to characterize the properties of materials are air-filled to al-

low sample insertion. The unsupported center-conductor often sags (see figure 1.1)

leading to characteristic impedance, Z0, uncertainty. It has been found that permit-

tivity and permeability measurements are highly susceptible to S-parameter and Z0

uncertainty [2,18]. Better characterization can be achieved with an expression for Z0

that can accommodate center-conductor misalignment. Previous techniques include

conformal mapping, finite difference equations and various Green’s function/integral

equation methods. While conformal mapping yields exact results, it involves compli-

cated functions and is cumbersome to implement especially when the system is not

symmetric. The finite difference technique requires evaluation points on the order of

5,000-10,000, making it computationally intensive [25]. Integral equation approaches,

like Kammler’s, lower computational size by using a sub-domain method of moments

technique. Approximate methods are also presented in the literature [20, 31]. The

goals of this research is to develop a full-wave, computationally efficient expression

for computing Z0 of a stripline having a misaligned center conductor.

1.4 Limitations

In order to make the problem tractable a simplified model of the stripline has

been assumed. The geometry is considered to be invariant along the guiding axis

and the center conductor is modeled as an infinitesimally thin strip. In addition,

only pre-existing numerical algorithms in Matlab are used for numerical integration.

The numerical integration techniques implemented in this research are an adaptive

Simpson quadrature, the trapezoidal method, an adaptive Lobatto quadrature, and

adaptive Gauss-Kronrod quadrature. These various methods are used to accommo-

date the various forms of integrals encountered in this research.

2



Sagging Center Conductor
Coaxial Feed

Ground Planes

Figure 1.1: Example of center conductor sag.
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1.5 Scope

There are certainly other methods to validate the physical parameters of a

stripline and investigate its characteristic impedance, as mentioned previously. This

thesis focuses on an integral equation formulation based on a parallel plate Green’s

function and efficient entire domain method of moments solution for the center strip

current. The ground planes are modeled as perfect electric conductors (PECs). Also,

as stated in Section 1.4, the center conductor is modeled as infinitesimally thin and

the structure is considered invariant along the guiding axis.

1.6 Organization

Chapter 2 provides the necessary theoretic background starting with an overview

of transmission line theory, stripline design and applications. Chapter 3 provides the

development of the required parallel plate vector potential Green’s function. Chap-

ter 4 details the formulation of a generalized pair of coupled electric field integral

equations (EFIE’s). It includes the development of a specialization for the transverse

electromagnetic (TEM) propagating mode. Chapter 5 details the Method of Moments

(MoM) solution for the general and specialized integral equation cases. It will include

a discussion on the type of expansion and testing functions selected and conclude

with numerical results. In Chapter 6, the characteristic impedance of the stripline

will be investigated for various center strip alignment configurations. Proposed design

parameters will be validated using this information. Lastly, the thesis concludes in

Chapter 7 with a summary of research efforts, results, potential contributions and

future research opportunities.
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II. Background

The purpose of this chapter is to provide a background for the stripline field

applicator, and to explore current research efforts in this topic. It is assumed

that the reader is familiar with electromagnetic theory and the uses and application

of Maxwell’s equations. This chapter will look at basic transmission line theory, basic

stripline characteristics and design practices, applications in material characterization

and current efforts to mitigate characterization error resulting from characteristic

impedance uncertainty.

2.1 Transmission Line Theory

The stripline belongs to a family of devices called transmission lines. A trans-

mission line is a structure that forms all or part of a path from one place to another

for directing the transmission of energy, such as electromagnetic waves or acoustic

waves, as well as electric power transmission [31]. Moreover, in electromagnetics, a

transmission line is comprised of conductors linking electrical systems that guide en-

ergy. Additional examples of transmission lines include wires, coaxial cables, electric

power lines, and microstrips. Transmission line theory must be used when the length

of the devices to be analyzed is long with respect to the operational wavelength. This

relatively large size allows for variation in voltage and current distributed throughout

the system or circuit.

A distributed model for a section of transmissions line is shown in the Figure

2.1 where R is the resistance in both conductors per unit length (Ω/m), L is the

inductance in both conductors per unit length (H/m), G is the conductance of the

dielectric media per unit length (S/m) and C is the capacitance between the con-

ductors per unit length (F/m). [24] R is included to account for ohmic losses in the

line. G is included to account for dielectric losses in the dielectric between conduc-

tors. L and C are included to account for the electric and magnetic energy stored

in the line [23]. For lossless lines R and G are zero. This model can be used to find

fundamental transmission line properties, namely the propagation constant and the

5



C ∆ZG ∆ZR ∆Z
L ∆ZI(Z)  →+

-
V(Z)

I(Z+∆Z)  → +

-
V(Z+∆Z)

Figure 2.1: Model for transmission line using circuit compo-
nents.

characteristic impedance. The propagation constant , γ = α + jβ, is calculated in

terms of the inductance, capacitance, conductance and resistance of the line and is

given by the expression [23]

γ = jω
√

(R + jωL)(G + jωC) (2.1)

If the line is lossless (R,G = 0), the propagating constant is purely imaginary. For

TEM modes, the wave number, k, is related to the propagating constant according

to the following relation

γ = jk (2.2)

where

k = β − jα (2.3)

and behaves like

e−γz = e−jkz = e−αze−jβz (2.4)

6



with α = 0 for a lossless line. The characteristic impedance of a transmission lines is

the ratio of the voltage to the current for a single traveling wave. The characteristic

impedance has units of ohms and is given as

Zo = ±V ±
o

I±o
=

√
R + jωL

G + jωC
(2.5)

When using transmission lines in conjunction with other devices (i.e. Genera-

tors, loads or other transmission lines) the behavior of the energy at the junctions is

important to understand. For maximum power transfer, the impedance of all devices

in a system must be matched. Variations in the impedance results in reflections. The

ratio of forward traveling energy to reflected energy is known as the reflection coef-

ficient. The reflection coefficient, expressed in terms of characteristic impedance, is

given by

Γ =
ZL − Z0

ZL + Z0

, (2.6)

where ZL is the load impedance and Z0 is the characteristic impedance of the line.

2.2 Stripline

Since their conception in the 1950’s [31] striplines have been carefully studied.

Like the coax, the stripline supports a dominant transverse electromagnetic mode. Its

geometry is characterized by a metal strip sandwiched between two parallel ground

planes. The dominant mode of the stripline is non-dispersive and has zero cutoff

frequency. Striplines are also relatively easy to fabricate.

Throughout this research, the following coordinate system will be adopted to

describe the stripline geometry. A cross section is illustrated in the Figure 2.2. The

origin is placed at the center between the ground planes. The perfect electric con-

ductor (PEC) ground planes located at y = ±h extend infinitely in the x and z

7
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Figure 2.2: Stripline cross section with misaligned center con-
ductor.

directions. The infinitesimally thin center conductor is located at y = yo and extends

from −a < x < a.

2.2.1 Asymmetric Striplines. A second class of stripline has begun to

emerge. This class, referred to as asymmetric striplines, incorporates all stripline that

have a non-uniform center conductor or a center conductor that is not perfectly cen-

tered between the ground planes. Asymmetry effects the stripline properties presented

in previous sections. The effects of the misalignment on characteristic impedance will

be explored in Chapter 6.

2.3 Stripline Design

The main considerations for stripline design are selecting materials used in fabri-

cation, calculating physical parameters and devising a method to feed the apparatus.

Other key factors are operating frequency regime and characteristic impedance. In

8



Table 2.1: Property summary of material for center
conductor and ground plane fabrication.

Metal Conductivity

Silver 6.3× 107

Copper 5.9× 107

Gold 4.5× 107

Aluminum 3.7× 107

Tin 9.17× 106

H-214*( at 2200 deg F) 8.1× 105

H-230*(at 1800 deg F) 7.9× 107

HR-120*(at 2200 deg F) 7.7× 105

H-282*(at 1800 deg F) 7.6× 107

* High temperature alloys produced by Haynes International, Inc.

this section some of the possible fabrication materials will be reviewed and the method

of calculating the physical characteristics of the stripline will be described.

Material selection must begin early in the design process [20]. Careful selection

of the dielectric material between the ground planes and the center strip will strongly

effect the performance of the stripline. Material uniformity, homogeneity, isotropy,

useful temperature range, durability and frequency response are the main factors

governing material selection. Table 2.1 lists possible choices for the conductors.

Physical parameters (such as operational frequency and Z0) are governed by the

intended use and are typically user defined. The first step in specifying the operational

frequency regime of a stripline is to calculate the spacing of the ground planes. The

fact that the ground planes form a parallel plate waveguide will be exploited. To

ensure that no higher order modes are excited, the cut-off frequency for the first

higher order mode above the dominant mode must be set (as a rule of thumb) ten

percent above the desired highest frequency of operation. Next, the width of the

center conductor must be computed to achieve the desired characteristic impedance.

The secondary dimensions of the ground planes, length and width must be selected

according to the intended application.

9



For a stripline that will operate in the dominant mode up to 4 GHz, stripline

spacing can be calculated using the following well known expression [11]

2h =
c

2fco1

(2.7)

where 2h is the spacing between the ground planes, c is the speed of light in a vacuum

and fco1 is the cutoff frequency of the first mode above TEM.

An approximate value for the center conductor width can be found by using the

predetermined center conductor width (a) to the ground plane spacing (h) ratio given

by the expression [10]
a

h
= 1.4 (2.8)

More exact results for the width of the center conductor will be computed using a full

wave analysis in Chapter 6.

The stripline applicator will be connected to a network analyzer by coax cable

during operation. Selection of a feed method and connector type can effect the balance

in the system. Mismatches between the characteristic impedance of the stripline and

coax cable will introduce error into material characterization measurements. In the

Section 2.5 efforts to improve junction design will be explored.

2.4 Applications

Striplines have many applications. They have becomes staples in the test com-

munity. Striplines are used to measure the electromagnetic properties of materials

and to test the radiated immunity of automobile components. This section briefly

summarizes these applications. The next section will discuss efforts to improve the

stripline junction design.

2.4.1 Material Measurements. Striplines are frequently employed to deter-

mine the electromagnetic properties of materials. [9,39] The advent of modern network

analyzers has made automated calculation of the constituent parameters possible.

10



Accurate extraction of the permittivity and permeability of a material require a well

calibrated system and reliable extraction methods.

2.4.1.1 Calibration. One method of calibrating a 2-port networks is

composed of through, reflect and line (TRL) measurements [9]. The thru measurement

is accomplished by connecting the ends of the port-1 and port-2 terminals. The reflect

measurement is accomplished by connecting a short, or reflecting standard, to each

port. For the line measurement, a length of transmission line is inserted between the

test ports. This method is very useful in waveguide measurements.

Other test beds pose a challenge to calibration. The TRL method above doesn’t

lend itself well to the stripline. For stripline calibration, an empty line measurement

and three carefully placed shorts provide the information necessary for calibration

[9,39].

2.4.1.2 Extracting Constitutive Parameters. The Nicolson-Ross-Wier

algorithm (NRW) is used to calculate the permittivity and permeability of unknown

materials from forward scattering parameters, S11 and S21, or reverse scattering pa-

rameters, S22 and S12 [9]. It is limited to single layered, homogeneous, isotropic

materials. For layered material, it is necessary to convert the scattering parameters

to wave transmission parameters (A-parameters) and isolate the A-parameters of the

unknown layer. Once isolated, the A-parameters of the unknown layer can be con-

verted to S-parameters of the unknown and NRW can be used to find the constituent

parameters for the unknown layer [9, 39].

2.4.2 Automotive Industries Use of the Tri-Plate. The automobile industry

uses a stripline-like device, a tri-plate, to test the radiated immunity of automobile

components. The tri-plate generates an electric field between the center plate and the

outer plates. As automotive components are place in the tri-plate, the test exposes

both the component under test and its wiring harness to the electric field. The

operation of the device is monitored as it is exposed to these fields [15].

11



2.5 Efforts to Optimize Striplines

Mitigating the effects of junction areas has been a major thrust in research, as

indicated by the many reference avaliable [6, 15, 16, 27, 30, 32, 34]. A common form of

coaxial-to-stripline transition consists of a simple inline butt joint [26,32]. This junc-

tion is not perfectly matched due to the disparity in the dimensions of the two pieces

of transmission line. Two approaches to improve impedance matching have been iden-

tified in literature, a tapered center conductor and a taper in conjunction with tuning

wedges. Similar efforts have been undertaken by the Automobile industries to perfect

the tri-plate line [15, 27,30].

In recounting the design of his measurement device, Barry goes into great detail

about his efforts to design the ”best possible transition” [6]. The optimal junctions

he proposed included a twenty degree taper. These tapers were introduced to avoid

capacitances between the conducting strip and conducting plane where the connectors

are affixed [34]. Barry’s efforts to improve the junction reduced reflections by more

than 30 dB [6].

Later, Barry’s method was also combined with tuning wedges to further improve

impedance matching by Hanson [16]. In this instance an eighteen degree taper was

used. Tuning wedges were made by inserting tapered corners at the ends of the

ground plane above and below the center conductor. However, Hanson concluded

that impedance matching was not critical if the correct method was used to calibrate

the system and extract the constitutive parameters. Non-linear tapers and wedges

composed of arbitrary permittivity profile have also been used with good results [37].

Tri-plates incorporate a tapered center ground plane and a wedge shaped tran-

sition area. Hwang carefully analyzed the impact that the length of the transition

zone and the steepness of the wedge have on energy transmission [21]. He determined

that at low frequencies, reflections are dominated by the difference in height between

the feed and test region of the apparatus. He proposed that a gradual discrete taper

would provide the best matching.
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2.6 Summary

In this chapter, fundament concepts from transmission theory were summarized.

The properties of striplines were examined. Additionally, the stripline design process

and a few stripline applications were presented. The chapter concluded with a brief

summary of recent developments in stripline fabrication. The information in this

chapter will be used throughout the rest of this thesis. The geometry described in

Figure 2.2 will be used in the next chapter to develop the parallel plate Green’s func-

tion. The approximate values for the ground plane spacing and the center conductor

width will be refined in Chapter 6.
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III. Parallel−Plate Green’s Function Development

3.1 Introduction

This chapter summarizes the derivation of the vector potential Green’s func-

tion for an electric current immersed in a PEC parallel-plate waveguide, as seen in

Figure 3.1. The derivation draws heavily upon the work in [17,22].

The vector potential parallel plate Green’s function is derived by first finding

the boundary conditions in terms of vector potential. Next, the general solution of the

vector potential wave equation is found. Finally, boundary conditions are enforced on

the general solution leading to a unique representation of the vector potential in terms

of the Green’s function and the electric current. Each of these steps is summarized

below.

3.2 Vector Potential Boundary Conditions

Enforcing boundary conditions (BCs) on the electric field (3.1) is complicated

by the required gradient and divergence operators [5],

~E =
1

jωµε
(k2 +∇∇·) ~A. (3.1)

However, these operations can be avoided by recasting the BCs in terms of the vector

potential. This is done by taking advantage of the non-coupling nature of a current

in a planar PEC environment ( i.e., each component of current maintains only its

respective component of potential) [17]. The vector potential BCs are found to be

Ax(x, y = ±h, z) = 0 ∀ x, z (3.2)

∂Ay(x, y = ±h, z)

∂y
= 0 ∀ x, z (3.3)

Az(x, y = ±h, z) = 0 ∀ x, z (3.4)

Since the BC’s presented in equations (3.2)-(3.4) must hold for all values of x,

z (i.e., −∞ < x < ∞, −∞ < z < ∞), a Fourier transformation on these spatial
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(ε0, µ0)

~J

σ = ∞
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y = h

y = −h

x

y

z

Figure 3.1: Problem Geometry: General 3D Current ( ~J) Im-
mersed in Parallel Plate Waveguide.

variables is performed. Transforms will be performed according to the defined forms

below (see equations (3.5) and (3.6) ). Spectral functions are indicated by a tilde

overbar and functional dependance on spectral variables (x → ξ, y → η and z → ζ).

A double transform is equivalent to two single transforms.

f̃(x, y, ζ) =

∫ ∞

−∞
f(x, y, z)e−jzζdz ⇔ f(x, y, z) =

1

2π

∫ ∞

−∞
f̃(x, y, ζ)ejzζdζ (3.5)

˜̃f(ξ, y, ζ) =

∫ ∞

−∞
f̃(x, y, ζ)e−jxξdx ⇔ f̃(x, y, ζ) =

1

2π

∫ ∞

−∞
˜̃f(ξ, y, ζ)ejxξdξ (3.6)

Transforming the vector potential boundary conditions to the ξ, ζ domain leads

to the following spectral representation of the vector potential boundary conditions,

˜̃Ax(ξ, y = ±h, ζ) = 0 (3.7)
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∂ ˜̃Ay(ξ, y = ±h, ζ)

∂y
= 0 (3.8)

˜̃Az(ξ, y = ±h, ζ) = 0 (3.9)

As in equations (3.2)-(3.4), equations (3.7)-(3.9) indicate that the tangential compo-

nents of the vector potential vanishes at the PEC boundary; similarly, the normal

derivative of the normal component is also zero. These boundary conditions will be

used to find the desired Green’s function. The general solution to the vector potential

wave equation is found next.

3.3 Solution of the Vector Potential Wave Equation

A general solution to the vector potential wave equation,

∇2 ~A(x, y, z) + k2 ~A(x, y, z)) = −µ~J(x, y, z), (3.10)

can be found as the linear superposition of principal and reflected contributions. The

principal contribution is related with a general current immersed in a homogenous

space similar the the material found between the ground planes of the parallel plate

waveguide. The reflected contribution is due to the presence of the ground planes.

The respective contributions satisfy the differential equations given by

∇2Ap
α(x, y, z) + k2Ap

α(x, y, z) = −µJα(x, y, z) . . . α = x, y, z (3.11)

∇2Ar
α(x, y, z) + k2Ar

α(x, y, z) = 0 . . . α = x, y, z (3.12)

where the superscript p denotes the principal contribution of the general wave equation

and the superscript r denotes the reflected contribution of the general wave equation.

The total solution is

Aα(x, y, z) = Ap
α(x, y, z) + Ar

α(x, y, z) . . . α = x, y, z (3.13)
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The solutions to the principle and the reflected parts are described in the sections

that follow.

3.3.1 Principal Solution. The principal part of the vector potential wave

equation(3.11) can be solved using a Fourier transform based complex-plane analysis.

Transforming on z and x according to the transform pairs (3.5) and (3.6)(with the

aid of the Fourier differentiation theorem) leads to

∂2 ˜̃Ap
α(ξ, y, ζ)

∂y2
− p2 ˜̃Ap

α(x, y, z) = −µ ˜̃Jα(ξ, y, ζ) . . . α = x, y, z (3.14)

where p =
√

ξ2 + ζ2 − k2. Note, ξ is an x-directed wave number playing the role of

kx, p is a y-directed wave number playing the role of jky and ζ is a z-directed wave

number playing the role of kz.

Since Ap
α(x, y, z) is associated with a current in an unbounded region, a Fourier

transform on y can also be performed according to the definition below, namely

˜̃̃
f(ξ, η, ζ) =

∫ ∞

−∞
˜̃f(ξ, y, ζ)e−jηydy ⇔ ˜̃f(ξ, y, ζ) =

1

2π

∫ ∞

−∞

˜̃̃
f(ξ, η, ζ)ejηydη. (3.15)

Completing the desired transform leads to

−(η2 + p2)
˜̃̃
Ap

α(ξ, η, ζ) = −µ
˜̃̃
Jα(ξ, η, ζ)

˜̃̃
Ap

α(ξ, η, ζ) =
µ

˜̃̃
Jα(ξ, η, ζ)

(η2 + p2)

=
µ

˜̃̃
Jα(ξ, η, ζ)

(η + jp)(η − jp)
(3.16)

Since boundary conditions will need to be enforced on the total solution at

y = ±h, an inverse Fourier transform must be performed on the principal contribution
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Figure 3.2: Singularities of the Integrand of Equation (3.17)
in Complex η Plane.

to return it to the y-domain. The inverse transform,

˜̃Ap
α(ξ, y, ζ) =

1

2π

∞∫

−∞

˜̃̃
Ap

α(ξ, η, ζ)ejηydη =
1

2π

∞∫

−∞

µ
˜̃̃
Jα(ξ, η, ζ)

(η + jp)(η − jp)
ejηydη, (3.17)

is accomplished with the aid of complex analysis, as discussed next.

3.3.1.1 Singularity Location and Closure Conditions. For the inte-

grand of equation (3.17), the only singularities are simple poles, η = ±jp. The loca-

tion of these poles can be determined by examining the expression p =
√

ξ2 + ζ2 − k2.

Note, ξ and ζ are the integration variables along the real axis and are purely real.

Furthermore, for passive media k, given by k = ω
√

εµ, will have a positive real part

and a negative imaginary part. Hence, k2 will be found in the third and fourth quad-
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rants of the complex plane. Likewise, p2 (p2 ∼ −k2) will be found in the first and

second quadrants of the complex plane. Taking the root of p2, p and −p will be

found in the first and third quadrants of the complex plane respectively. Finally, the

multiplication of the value of p with j will rotate the location of the pole into the

second and forth quadrant of the complex η-plane (See Figure 3.2).

Cauchy’s integral theorem can be used in the evaluation on the real-axis integral

in equation (3.17). An appropriate contour for the case of y > y′ is shown in Figure

3.3. Note, since

ejη(y−y′) = e−ηim(y−y′)ejηre(y−y′) (3.18)

a careful inspection reveals that the following closure conditions must be obeyed for

convergence [17]:

1. Case y − y′ > 0: e−ηim(y−y′) provides decay if ηim > 0 and an upper-half plane

closure (UHPC) will ensure the infinite semi-circular contribution vanishes as η

approaches ∞.

2. Case y − y′ < 0: e−ηim(y−y′) provides decay if ηim < 0 and a lower-half plane

closure (LHPC) is required to ensure the infinite semi-circular contribution van-

ishes as η approaches ∞.

Thus, the relation of the observer location (y) to the source location (y′) deter-

mines whether an UHPC (y > y′) or a LHPC (y < y′) is required.

3.3.1.2 Applying Cauchy Integral Formula. Now that the singularities

have been identified and the closure conditions investigated, we may now proceed in

finding ˜̃Ap
α(ξ, y, ζ). Only the case of y > y′ will be presented here.

Recall that
˜̃̃
Jα(ξ, η, ζ) can be written according to the following Fourier trans-

form pair,
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Figure 3.3: Upper-Half Plane Closure used to integrate case
y > y′

˜̃̃
Jα(ξ, η, ζ) =

∫ ∞

−∞
˜̃Jα(ξ, y′, ζ)e−jηy′dy′ =

∫ h

−h

˜̃Jα(ξ, y′, ζ)e−jηy′dy′. (3.19)

Note, the region of existence of the current is physically confined within the parallel-

plate background environment −h < y < h; accordingly, the limits of integration can

be truncated to neglect the portions beyond the boundaries that don’t contribute to

the integral (i.e., Jα(x, h < y < ∞, z) = 0)). Substituting (3.19) into (3.17) leads to

˜̃Ap
α(ξ, y, ζ) =

1

2π

∞∫

−∞

µ
h∫
−h

˜̃Jα(ξ, y′, ζ)e−jηy′dy′

(η + jp)(η − jp)
ejηydη

=

h∫

−h


 1

2π

∞∫

−∞

ejη(y−y′)

(η + jp)(η − jp)
dη


 µ ˜̃Jα(ξ, y′, ζ)dy′ (3.20)

where

˜̃Gp
αα(ξ, ζ; y − y′) =

1

2π

∞∫

−∞

ejη(y−y′)

(η + jp)(η − jp)
dη (3.21)
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is the spectral domain (i.e., the ξ, ζ- domain) Green’s function for the principal wave

contribution.

A closed form expression for the spectral domains Green’s function is calculated

next using complex plane analysis. Only the process for the case y > y′ (UPHC) will

be presented (see Figure 3.3). Momentarily neglecting the factor 1
2π

in the spectral do-

main Green’s function, the desired inverse Fourier transform integral to be calculated

is

∞∫

−∞

ejη(y−y′)

(η + jp)(η − jp)
dη = lim

R→∞

∫

Cre

ejη(y−y′)

(η + jp)(η − jp)
dη

= lim
R→∞

R∫

−R

ejη(y−y′)

(η + jp)(η − jp)
dη (3.22)

Applying Cauchy’s Integral Theorem [3] leads to

lim
R→∞

R∫

−R

ejη(y−y′)

(η + jp)(η − jp)
dη +

∮

C+
p

ejη(y−y′)

(η + jp)(η − jp)
dη

+ lim
R→∞

∫

C+∞

ejη(y−y′)

(η + jp)(η − jp)
dη = 0 (3.23)

lim
R→∞

R∫

−R

ejη(y−y′)

(η + jp)(η − jp)
dη =

−
∮

C+
p

ejη(y−y′)

(η + jp)(η − jp)
dη − lim

R→∞

∫

C+∞

ejη(y−y′)

(η + jp)(η − jp)
dη (3.24)

The left-hand side of equation (3.24) represents the desired integration along the real

axis. The right-hand side of equation (3.24) is solved using Cauchy’s integral formula
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and Jordan’s Lemma [3], leading to

− ∮
C+

p

ejη(y−y′)

(η + jp)(η − jp)
dη = −

∮

C+
p

ejη(y−y′)/(η + jp)

(η − jp)
dη

= −
[
−j2π

ejη(y−y′)

(η + jp)
|η=jp

]
=

πe−p(y−y′)

p
. (3.25)

It should be noted that the negative of the residue is used to compensate for the

clockwise direction of integration. The infinite semicircular contribution (C+
∞) van-

ishes according to Jordan’s lemma. Furthermore, application of Jordan’s lemma can

be extended to y = y′, as the integrand still converges as strongly as 1
η2 for large η.

The combined result of both cases y > y′ and y < y′ is (the factor of 1/2π again

once again included)

˜̃Gp
αα(ξ, ζ; y − y′) =

e−p|y−y′|

2p
(3.26)

which leads to

˜̃Ap
α =

∫

y∗

e−p|y−y′|

2p
µ ˜̃Jαdy′ =

h∫

−h

e−p|y−y′|

2p
µ ˜̃Jαdy′ (3.27)

3.3.2 Reflected Solution. The form of the reflected portion of the vector

wave equation in the ξ, ζ-domain is easily determined

∂2 ˜̃Ar
α(ξ, y, ζ)

∂y2
− p2 ˜̃Ar

α(ξ, y, ζ) = 0 . . . α = x, y, z. (3.28)

Its harmonic solution is readily recognized to be, ˜̃Ar
α = W+

α e−py + W−
α epy. Note, the

first term represents an up-going wave with complex amplitude W+
α and the second

term represents a down-going wave with complex amplitude W−
α .

3.4 Applying Boundary conditions to Total Solution

Applying the boundary conditions; (3.7)-(3.9) to the total solution, ˜̃Aα = ˜̃Ap
α +

˜̃Ar
α, at y = ±h yields
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˜̃Aα =

∫

y′

e−p|y−y′|

2p
µ ˜̃Jdy′ +

∫

y′

[
R̄ααe−p(y′+2h+y) + R̄αα

¯̄Rααe−p(−y′+4h+y)

2p(1− R̄αα
¯̄Rααe−4ph)

+
¯̄Rααe−p(−y′+2h−y) + R̄αα

¯̄Rααe−p(y′+4h−y

2p(1− R̄αα
¯̄Rααe−4ph)

]
µ ˜̃Jαdy′ (3.29)

where R̄αα is the reflection coefficient for the lower ground plane, ¯̄Rαα is the reflection

coefficient for the upper ground plane and p =
√

ξ2 + ζ2 − k2. All of the integrand in

equation(3.29) being multiplied by µ ˜̃J represents the vector potential parallel-plate

Green’s function in the spectral (ξ, ζ) domain.

In this form (3.29), a great deal of physical meaning can be gleaned. As seen in

Figure 3.4, each term in the solution accounts for a different possible path from the

source, y′ ,to the observer, y [17].

• The 1st path, direct from source to observe, is accounted for in the contribution

from the principal part, e−p(y−y′)

• The 2nd path, from the source to the observe after reflection off the upper-

conductor, is accounted for in the term ¯̄Re−p(−y′+2h−y)

• The 3rd path, from the source to the observer after reflection off the lower-

conductor, is accounted for in the term R̄e−p(y′+2h+y)

• The 4th path, from the source off the top-conductor, then the bottom-conductor

then to the source, is accounted for in the term R̄ ¯̄Re−p(−y′+4h+y)

• The final path, the inverse of the 4th path, is accounted for in the 5th term

R̄ ¯̄Re−p(y′+4h−y)

Clearly, the proposed principal contribution is related to the forced response in

unbounded media while the reflected contribution accounts for the reflected response.
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Figure 3.4: Each Possible path (1-5) from the source to the
observer is accounted for in equation (3.29).
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A more compact version of the Green’s function can be found by using the

definition of hyperbolic functions and setting R̄αα, ¯̄Rαα = −1 . . . α = x, z, R̄yy,
¯̄Ryy =

1. Equation (3.29) reduces to

˜̃Gαα(ξ, ζ; y | yo) =





cosh[p(2h−|y−y′|)]−cosh[p(y+y′)]
2psinh(2ph)

if α = x, z,

cosh[p(2h−|y−y′|)]+cosh[p(y+y′)]
2psinh(2ph)

if α = y.

(3.30)

Note, the Green’s function is even in p, thus the square root branch cut contribution

is removable, as physically expected for this closed structure.

3.5 Summary

In this chapter, the vector potential parallel-plate Green’s function for an elec-

tric current was developed. First, spectral and spacial vector potential boundary

conditions for the parallel-plate wave guide were found. The forced vector potential

wave equation was solved by decomposing the equation into principle and reflective

parts. Each part was then solved independently. Complex analysis was used to find

the solution to the principle part and the reflected part was readily identified as having

a harmonic solution. Boundary conditions were applied to the total solution at the

outer conductors to find the Green’s function. The hyperbolic version of the Green’s

function (3.30) was identified and will be used in the next chapter to formulate an

integral equation for a stripline.
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IV. Electric Field Integral Equations

4.1 Introduction

In chapter 3, we discussed the development of the parallel-plate Green’s func-

tion. In this chapter, we will use this Green’s function to formulate coupled integral

equations for finding the current on the center conductor of a stripline modeled as a

strip embedded in a parallel-plate waveguide environment. First, a set of coupled in-

tegral equations will be formulated for a strip with infinite conductivity. This method

will include converting the PEC boundary condition to the ζ-domain (prompted by

the infinite length along the z-axis). Finally, a specialized integral equation for a

stripline supporting a TEM mode will be considered. In the next chapter, the method

of moments will be used to solve for the unknown currents and guided propagation

constant found in these integral equations.

4.2 Integral Equation Formulation for PEC Stripline

The goal of this section is to formulate an integral equation for the unknown

current density on the PEC center conductor of the stripline. Specifically, an electric

field integral equation (EFIE) is developed by enforcing the well-known boundary

condition

t̂ · ~E = 0 . . . t̂ = x̂, ẑ (4.1)

on the PEC center strip. Note, it will be assumed that the PEC center strip is

infinitesimally thin and located at y = y0.

Decomposing the electric field in (4.1) into incident and scattered contributions,

~E = ~Ei + ~Es, leads to the result (for t̂ = x̂, ẑ)

t̂ · ~Es = −t̂ · ~Ei or Es
x = −Ei

x, Es
z = −Ei

z (4.2)

where

~Es =
1

jωεµ
(k2 +∇∇·) ~As. (4.3)
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Substituting equation (4.3) into the leftside of the equation (4.2) and transform-

ing to the ζ-domain yields

t̂ · 1

jωεµ
(k2 + ∇̃∇̃·) ~̃As = −t̂ · ~Ei . . . t̂ = x̂, ẑ (4.4)

where

∇̃ = x̂
∂

∂x
+ ŷ

∂

∂y
+ jζẑ

~̃As =

∫

y∗

∫

x∗

˜̄G(ζ; ~ρ | ~ρ′) · ~̃J(ρ′, ζ)dx′dy′ . . . ρ = xx̂ + yŷ . . . ρ′ = x′x̂ + y′ŷ, (4.5)

˜̄G(ρ | ρ′, ζ) is the ζ-domain dyadic Green’s function, y∗, x∗ is shorthand notation

for the region of integration and ~̃J , the ζ-domain representation of a the `th natural

mode z-propagating surface current on an infinitesimally thin center conductor, can

be written as [28]

~̃J = x̂
J̃sx(x)δ(y − y0)

(ζ − ζ`)
+ ẑ

J̃sz(x)δ(y − y0)

(ζ − ζ`)
. (4.6)

Additionally, the limits of integration for equation (4.5) can be reduced to the region

where the strip exists (−a < x′ < a).
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Substituting equations (4.5) and (4.6) into equation (4.4) yields the following

boundary condition relation for the x and z components of the electric field

1

jωεµ
(k2Ãx +

∂2

∂x2
Ãx +

∂

∂x
jζÃz) = −Ẽi

x

1

jωεµ


µk2

2π

a∫

−a

∞∫

−∞

˜̃Gxx(ξ, ζ; yo | yo)e
jxξe−jx′ξ J̃sx(x

′)
(ζ − ζ`)

dξdx′

− µ

2π

a∫

−a

∞∫

−∞

ξ2 ˜̃Gxx(ξ, ζ; yo | yo)e
jxξe−jx′ξ J̃sx(x

′)
(ζ − ζ`)

dξdx′

−µζ

2π

a∫

−a

∞∫

−∞

ξ ˜̃Gzz(ξ, ζ; yo | yo)e
jxξe−jx′ξ J̃sz(x

′)
(ζ − ζ`)

dξdx′


 = −Ẽi

x

a∫

−a

∞∫

−∞

(k2 − ξ2) ˜̃Gxx(ξ, ζ; yo | yo)e
jxξe−jx′ξJ̃sx(x

′)dξdx′

−
a∫

−a

∞∫

−∞

ζξ ˜̃Gzz(ξ, ζ; yo | yo)e
jxξe−jx′ξJ̃sz(x

′)dξdx′

= −2πjωε(ζ − ζ`)Ẽ
i
x (4.7)
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1

jωεµ
(k2Ãz +

∂

∂x
jζÃx − ζ2Ãz)) = −Ẽi

z

1

jωεµ


µk2

2π

a∫

−a

∞∫

−∞

˜̃Gzz(ξ, ζ; yo | yo)e
jxξe−jx′ξ J̃sz(x

′)
(ζ − ζ`)

dξdx′

− µ

2π

a∫

−a

∞∫

−∞

ξζ ˜̃Gxx(ξ, ζ; yo | yo)e
jxξe−jxξ J̃sx(x

′)
(ζ − ζ`)

dξdx′

− µ

2π

a∫

−a

∞∫

−∞

ζ2 ˜̃Gzz(ξ, ζ; yo | yo)e
jxξe−jxξ J̃sz(x

′)
(ζ − ζ`)

dξdx′


 = −Ẽi

z

−
a∫

−a

∞∫

−∞

ζξ ˜̃Gxx(ξ, ζ; yo | yo)e
jxξe−jxξJ̃sx(x

′)dξdx′

+

a∫

−a

∞∫

−∞

(k2 − ζ2) ˜̃Gzz(ξ, ζ; yo | yo)e
jxξe−jxξJ̃sz(x

′)dξdx′

= −2πjωε(ζ − ζ`)Ẽ
i
z (4.8)

For natural mode propagation (ζ = ζ`), of which the TEM is dominant, the

right-hand side of equations (4.7) and (4.8) vanish [28] leading to the desired coupled

EFIE’s for the unknown currents J̃sx and J̃sz, that is
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a∫

−a

∞∫

−∞

(k2 − ξ2) ˜̃Gxx(ξ, ζ; yo | yo)e
jxξe−jx′ξJ̃sx(x

′)dξdx′

−
a∫

−a

∞∫

−∞

ζξ ˜̃Gzz(ξ, ζ; yo | yo)e
jxξe−jx′ξJ̃sz(x

′)dξdx′ = 0 (4.9)

−
a∫

−a

∞∫

−∞

ζξ ˜̃Gxx(ξ, ζ; yo | yo)e
jxξe−jxξJ̃sx(x

′)dξdx′

+

a∫

−a

∞∫

−∞

(k2 − ζ2) ˜̃Gzz(ξ, ζ; yo | yo)e
jxξe−jxξJ̃sz(x

′)dξdx′ = 0 (4.10)

It should be noted that the first integral in equation (4.9) accounts for the x

component of the scattered electric field maintained by the x component of current.

The second integral in of equation (4.9) accounts for the x component of the scattered

electric field maintained by the z component of current. The first integral in equation

(4.10) accounts for the z component of the scattered electric field maintained by the

x component of current. Finally, the last line in integral (4.10) accounts for the z

component of the scattered electric field maintained by the z component of the current.

These relationships will be exploited in the next section to find a specialized TEM

integral equation and will subsequently lead to enhanced computational efficiency.

4.3 TEM Specialization of a PEC Stripline

For TEM mode propagation in the air filled, lossless stripline, there is no x

component of the current , that is, J̃sx = 0 and the propagation constant takes on

the value ζ = k = k0 (see Section 5.3 for more information on these results). Under

these circumstances, equation (4.10) vanishes and equation (4.9) reduces to

a∫

−a

∞∫

−∞

k0ξ
˜̃Gzz(ξ, k0; yo | yo)e

jxξe−jx′ξJ̃sz(x
′)dξdx′ = 0 (4.11)
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Equation (4.11) represents a single EFIE for the unknown surface current J̃sz of

the Dominant TEM mode, and will be explored in the next chapter. It is anticipated

that substantial computational gains will be achieved, compared to the coupled EFIE

equations (4.9) and (4.10). Note, if the properties of higher order modes are sought,

the coupled EFIE must be used.

4.4 Summary

In this chapter, coupled integral equations were formulated for a stripline having

a perfect center conductor. Furthermore, it was shown that the coupled integral

equation reduce to a single integral equation for the TEM mode. This specialization

naturally leads to a more computationally efficient formulation. The solution of these

integral equations will be sought in the following chapter.
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V. Method of Moments

5.1 Introduction

In this chapter, an efficient entire-domain method of moments (MoM) technique

will be used to solve the integral equations formulated in the last chapter. For the

coupled integral equations formulated for the perfectly conducting center conductor,

a Galerkin’s based MoM is found with the aid of Chebyshev polynomials. Solutions

will be found for both the general coupled EFIE formulation and the specialized TEM

EFIE formulation. The currents (J̃sx and J̃sz) and guided propagation constant (ζ)

found for each of these formulations through this process will be used in the next

chapter to calculate the desired characteristic impedance of the stripline.

5.2 MoM Solution of Coupled EFIE’s for PEC Strip

In this section, a Galerkin’s based MoM solution is sought for the coupled EFIE’s

for the stripline having a PEC center strip. Two different scenarios of test and ex-

pansion functions will be investigated. It will be shown that the second set of expan-

sion and testing functions has more desirable rates of convergence, and will therefore

be used in solving for the unknown currents and calculation of the characteristic

impedance and TEM mode propagation constant.

5.2.1 General MoM Solution. In the previous chapter, it was shown that

the coupled integral equation (CIE) for a stripline having a PEC center conductor are

given by

32



∫ a

−a

∫ ∞

−∞
(k2 − ξ2) ˜̃Gxx(ξ, ζ; yo|yo)e

jxξe−jx′ξJ̃sx(x
′)dξdx′

−
∫ a

−a

∫ ∞

−∞
ξζ ˜̃Gzz(ξ, ζ; yo|yo)e

jxξe−jx′ξJ̃sz(x
′)dξdx′ = 0 (5.1)

−
∫ a

−a

∫ ∞

−∞
ξζ ˜̃Gxx(ξ, ζ; yo|yo)e

jxξe−jx′ξJ̃sx(x
′)dξdx′

+

∫ a

−a

∫ ∞

−∞
(k2 − ζ2) ˜̃Gzz(ξ, ζ; yo|yo)e

jxξe−jx′ξJ̃sz(x
′)dξdx′ = 0. (5.2)

The first step in the MoM solution is to expand the unknown currents J̃sx, J̃sz accord-

ing to the weighted sum given by

J̃sα(x′) =
N−1∑
n=0

anαenα(x′) . . . α = x, z (5.3)

where enα(x′) are known expansion functions and anα are unknown expansion coeffi-

cients. Substituting (5.3) into (5.1) and (5.2) leads to

N−1∑
n=0

anx

∫ ∞

−∞
(k2 − ξ2) ˜̃Gxx(ξ, ζ; yo|yo)e

jxξ

∫ a

−a

enx(x
′)e−jx′ξdx′dξ

−
N−1∑
n=0

anz

∫ ∞

−∞
ξζ ˜̃Gzz(ξ, ζ; yo|yo)e

jxξ

∫ a

−a

enz(x
′)e−jx′ξdx′dξ = 0 (5.4)

−
N−1∑
n=0

anx

∫ ∞

−∞
ξζ ˜̃Gxx(ξ, ζ; yo|yo)e

jxξ

∫ a

−a

enx(x
′)e−jx′ξdx′dξ

+
N−1∑
n=0

anz

∫ ∞

−∞
(k2 − ζ2) ˜̃Gzz(ξ, ζ; yo|yo)e

jxξ

∫ a

−a

enz(x
′)e−jx′ξdx′dξ = 0. (5.5)

Defining gnα(ξ) as

gnα(ξ) =

∫ a

−a

enα(x′)e−jx′ξdx′ . . . α = x, z (5.6)

33



allows (5.4) and (5.5) to be simplified as follows

N−1∑
n=0

anx

∫ ∞

−∞
(k2 − ξ2) ˜̃Gxx(ξ, ζ; yo|yo)e

jxξgnx(ξ)dξ

−
N−1∑
n=0

anz

∫ ∞

−∞
ξζ ˜̃Gzz(ξ, ζ; yo|yo)e

jxξgnz(ξ)dξ = 0 (5.7)

−
N−1∑
n=0

anx

∫ ∞

−∞
ξζ ˜̃Gxx(ξ, ζ; yo|yo)e

jxξgnx(ξ)dξ

+
N−1∑
n=0

anz

∫ ∞

−∞
(k2 − ζ2) ˜̃Gzz(ξ, ζ; yo|yo)e

jxξgnz(ξ)dξ = 0. (5.8)

Equations (5.7) and (5.8) represent 2 equations and 2N unknowns. In order to estab-

lish a 2N × 2N MoM matrix, the following testing operators are applied as the next

step in the MoM solution, namely

a∫

−a

[ ]tmα(x)dx . . . α = x, z and m = 0, . . . , N − 1 (5.9)

where tmα(x) is a known testing function. Applying the α = x testing operator to

(5.7), the α = z testing operator to (5.8) and defining fmα(ξ) as

fmα(ξ) =

a∫

−a

tmα(x)ejxξdx (5.10)
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results in the following coupled equation

N−1∑
n=0

anx

∫ ∞

−∞
(k2 − ξ2) ˜̃Gxx(ξ, ζ; yo|yo)fmx(ξ)gnx(ξ)dξ

−
N−1∑
n=0

anz

∫ ∞

−∞
ξζ ˜̃Gzz(ξ, ζ; yo|yo)fmx(ξ)gnz(ξ)dξ = 0 . . . m = 0, . . . , N − 1

(5.11)

−
N−1∑
n=0

anz

∫ ∞

−∞
ξζ ˜̃Gxx(ξ, ζ; yo|yo)fmz(ξ)gnx(ξ)dξ

+
N−1∑
n=0

anz

∫ ∞

−∞
(k2 − ζ2) ˜̃Gzz(ξ, ζ; yo|yo)fmz(ξ)gnz(ξ)dξ = 0 . . .m = 0, . . . , N − 1

(5.12)

which can be further simplified as

N∑
n=0

anxA
mn
xx +

N∑
n=0

anzA
mn
xz = 0 . . . m = 0, . . . , N − 1

N∑
n=0

anxA
mn
zx +

N∑
n=0

anzA
mn
zz = 0 . . . m = 0, . . . , N − 1 (5.13)

where

Amn
xx =

∫ ∞

−∞
(k2 − ξ2) ˜̃Gxx(ξ, ζ; yo|yo)fmx(ξ)gnx(ξ)dξ (5.14)

Amn
zx = −

∫ ∞

−∞
ξζ ˜̃Gzz(ξ, ζ; yo|yo)fmx(ξ)gnz(ξ)dξ (5.15)

Amn
xz = −

∫ ∞

−∞
ξζ ˜̃Gxx(ξ, ζ; yo|yo)fmz(ξ)gnz(ξ)dξ (5.16)

Amn
zz =

∫ ∞

−∞
(k2 − ζ2) ˜̃Gzz(ξ, ζ; yo|yo)fmz(ξ)gnz(ξ)dξ. (5.17)

Note, Amn
αβ (with α and β equal to x, z) physically represents how the nth β-directed

source current term couples into the mth α-directed field term. Next, two specific

scenarios of expansion and testing functions will be investigated.
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5.2.2 Galerkin Method Using Chebsyshev Polynomials of the First Kind.

Selecting the ”best” expansion/testing functions has been shown to improve the ac-

curacy and computational efficiency of the MoM [4,5,19,29]. Using an entire-domain

technique can further improve efficiency because fewer terms are required in the ex-

pansion leading to a smaller MoM matrix [5]. Chebsyshev polynomials make excel-

lent expansion and testing functions in this research because of their ability to model

current behavior on a strip, include edge effects [4, 14]. The proposed testing and

expansion functions in the first scenario are given by [17]

tnx = enx = T(2n+1)(
x

a
)

√
1− (

x

a
)2...(odd function) (5.18)

tnz = enz =
T(2n)(

x
a
)√

1− (x
a
)2

...(even function) (5.19)

This choice is prompted by the dominant TEM mode behavior characterized by an

even longitudinal current and an odd transverse current [17]. An additional advantage

of this selection is that a closed form solution for fmα(ξ) and gnα(ξ), which are given

by

fmα(ξ) =





∫ a

−a
T2m+1(

x
a
)
√

1− (x
a
)2ejxξdx if α = x

∫ a

−a

T2m(x
a
)√

1−(x
a
)2

ejxξdx if α = z
(5.20)

and

gnα(ξ) =





∫ a

−a
T2n+1(

x
a
)
√

1− (x
a
)2e−jxξdx if α = x

∫ a

−a

T2n(x
a
)√

1−(x
a
)2

e−jxξdx if α = z
(5.21)
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can be found [17]. Substitution of(5.20) and (5.21) into (5.14)-(5.17) leads to

Amn
xx =

a

(−j)2n

∫ ∞

−∞
(k2 − ξ2) ˜̃Gxx(ξ, ζ; yo|yo)[J2m+1(aξ) +

1

2
(J2m+3(aξ) + J2m−1(aξ))]

[J2n+1(aξ) +
1

2
(J2n+3(aξ) + J2n−1(aξ))]dξ (5.22)

Amn
xz = −j(−1)n

∫ ∞

−∞
ξζ ˜̃Gzz(ξ, ζ; yo|yo)[J2m+1(aξ) +

1

2
(J2m+3(aξ) + J2m−1(aξ))]

J2n(aξ)dξ (5.23)

Amn
zx =

ja

(−j)2n

∫ ∞

∞
−ξζ ˜̃Gxx(ξ, ζ; yo|yo)J2m(aξ)

[J2n+1(aξ) +
1

2
(J2n+3(aξ) + J2n−1(aξ))]dξ (5.24)

Amn
zz = (−1)n

∫ ∞

−∞
(k2 − ζ2) ˜̃Gzz(ξ, ζ; yo|yo)J2m(aξ)J2n(aξ)dξ, (5.25)

where Jn is a Bessel Function of the nth order. Since the integrals in (5.22)-(5.25)

involve infinite limits, it is important to understand the asymptotic behavior of these

integrands to address the issue of convergence. Using the large argument approxima-

tion of the Bessel function in conjunction with the large argument behavior of the

Green’s function, given by

Gαα ∼ 1

ξ
∀ α = x, z ξ →∞, (5.26)

the asymptotic behavior of the integrands are found to be

I(Amn
xx ) ∼ 0 (5.27)

I(Amn
zx ) ∼ 1

ξ
(5.28)

I(Amn
xz ) ∼ 1

ξ
(5.29)

I(Amn
zz ) ∼ 1

ξ2
(5.30)
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where I(Amn
αβ ) is the integrand of the integral corresponding to Amn

αβ . Note, the desired

computational efficiency cannot be achieved due to the slow convergence (less than

1
ξ2 ), thus a more suitable expansion/test set will be studied in the next section.

5.2.3 Galerkin Method Using Chebsyshev Polynomials of the First/Second Kind.

Improved convergence can be achieved by selecting a more suitable expansion/test-

ing function set. The following expansion and test functions were selected [17]:

tnx = enx = U(2n+1)(
x

a
)

√
1− (

x

a
)2...(odd function) (5.31)

tnz = enz =
T(2n)(

x
a
)√

1− (x
a
)2

...(even function) (5.32)

to improve computational efficiency while maintaining the ability to model current

behavior. New values of fmz and gnz, must be calculated and are discussed next.

5.2.3.1 Evaluation of fmz and gnz. Applying equation (5.32) to the

definition of fmz and gnz yields

fmz(ξ) =

∫ a

−a

T(2m)(
x
a
)√

1− (x
a
)2

ejxξdx

=

∫ a

−a

T(2m)(
x
a
)√

1− (x
a
)2

cos(xξ)dx + j

∫ a

−a

T(2m)(
x
a
)√

1− (x
a
)2

sin (xξ)dx

︸ ︷︷ ︸
=0

...c.o.v x̃ =
x

a

= 2a

∫ 1

0

T(2m)(x̃)√
1− (x̃)2

cos(ax̃ξ)dx̃

= 2aIe
fmz(aξ) (5.33)
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and

gnz(ξ) =

∫ a

−a

T(2n)(
x
a
)√

1− (x
a
)2

e−jxξdx

=

∫ a

−a

T(2n)(
x
a
)√

1− (x
a
)2

cos(xξ)dx− j

∫ a

−a

T(2n)(
x
a
)√

1− (x
a
)2

sin(xξ)dx

︸ ︷︷ ︸
=0

...c.o.v x̃ =
x

a

= 2a

∫ 1

0

T(2n)(x̃)√
1− (x̃)2

cos(ax̃ξ)dx̃

= 2aIe
gnz(aξ) (5.34)

where (see Appendix A)

Ie
fmz(aξ) = Ie

gnz(aξ) =





(−1)n(π
2
)J2n(aξ) if ξ 6= 0 n = 0, 1, 2, 3 . . .,

0 if ξ = 0 n = 1, 2, 3 . . .,

π
2

if ξ = 0 n = 0.

(5.35)

5.2.3.2 Evaluation of fmx and gnx. Applying equation (5.31) to the

definition of fmx and gnx yields

fmx(ξ) =

∫ a

−a

U(2m+1)(
x

a
)

√
1− (

x

a
)2ejxξdx

=

∫ a

−a

U(2m+1)(
x

a
)

√
1− (

x

a
)2 cos(xξ)dx

︸ ︷︷ ︸
=0

+j

∫ a

−a

U(2m+1)(
x

a
)

√
1− (

x

a
)2 sin(xξ)dx

= 2aj

∫ 1

0

U(2n+1)(x̃)
√

1− (x̃)2 sin(ax̃ξ)dx̃

= 2ajIo
fmx(aξ) (5.36)
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and

gmx(ξ) =

∫ a

−a

U(2n+1)(
x

a
)

√
1− (

x

a
)2e−jxξdx

=

∫ a

−a

U(2n+1)(
x

a
)

√
1− (

x

a
)2 cos(xξ)dx

︸ ︷︷ ︸
=0

−j

∫ a

−a

U(2n+1)(
x

a
)

√
1− (

x

a
)2 sin(xξ)dx

= −2aj

∫ 1

0

U(2n+1)(x̃)
√

1− (x̃)2 sin(ax̃ξ)dx̃

= −2ajIo
gnx(aξ) (5.37)

where (see Appendix A)

Io
fmx(aξ) = Io

gnx(aξ) =





(−1)n( (n+1)π
aξ

)J2n+2(aξ) if ξ 6= 0 n = 0, 1, 2, 3 . . .,

0 if ξ = 0.

(5.38)

5.2.3.3 Asymptotical Behavior of Integrands. Again, the behavior of

the integrands must be investigated prior to performing numerical integration. Us-

ing (5.26) and the large argument approximation of the Bessel function, the behavior

of the integrands as ξ →∞ is given by

lim
ξ→∞

I(Axx) ∼ 1

ξ2
(5.39)

lim
ξ→∞

I(Axz) ∼ 1

ξ2
(5.40)

lim
ξ→∞

I(Azx) ∼ 1

ξ2
(5.41)

lim
ξ→∞

I(Azz) ∼ 1

ξ2
(5.42)

Additionally, when analyzing the behavior for small arguments, only the worst case

scenario (n,m = 0) need be considered. The behavior of the integrands as ξ → 0 is
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found to be

lim
ξ→0

I(Axx) ∼ ξ2 (5.43)

lim
ξ→0

I(Axz) ∼ ξ2 (5.44)

lim
ξ→0

I(Azx) ∼ ξ2 (5.45)

lim
ξ→0

I(Azz) ∼ 0 (5.46)

where I(Amn
αβ ) is the integrand of the integral corresponding to Amn

αβ . At both extremes

(ξ →∞ and ξ → 0), the integrands are well behaved and thus suitable for numerical

integration. Substantial acceleration of convergence is achieved using these more well-

behaved expansion and testing functions. Thus, numerical integration can be used to

compute the MoM matrix elements.

5.2.3.4 Solving the System Ax = 0. Based on the second scenario for

the testing and expansion functions, the MoM matrix equation for the natural modes

is written as 
Amn

xx Amn
xz

Amn
zx Amn

zz





axn

azn


 =


0

0


 (5.47)

where (using the evenness of integrands)

Amn
xx = 8a2

∫ ∞

0

(k2 − ξ2) ˜̃Gxx(ξ, ζ, yo|yo)I
o
fxm(aξ)Io

gxn(aξ)dξ (5.48)

Amn
xz = 8a2j

∫ ∞

0

−ξζ ˜̃Gzz(ξ, ζ, yo|yo)I
o
fxm(aξ)Ie

gzn(aξ)dξ (5.49)

Amn
zx = −8a2j

∫ ∞

0

−ξζ ˜̃Gxx(ξ, ζ, yo|yo)I
e
fzm(aξ)Io

gxn(aξ)dξ (5.50)

Amn
zz = 8a2

∫ ∞

0

(k2 − ζ2) ˜̃Gzz(ξ, ζ, yo|yo)I
e
fzm(aξ)Ie

gzn(aξ)dξ. (5.51)

This matrix equation will have a non-trivial solution only if the determinant is

equal to zero [36]. There are an infinite number of ζ values leading to det(A) = 0

and it is these values that represent the propagation constant of the natural modes of
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the stripline structure. Once the natural mode propagation constants are found, the

natural mode currents (i.e.,anx and anz) can be easily computed using an eigenvector

solution technique. In this research, only the TEM natural mode behavior is sought

and discussed next.

5.2.3.5 Numerical Results. Except for the evaluation of gnα and

fmα (α = x, z) all integrations were performed numerically. Matlab’s adaptive Simp-

son quadrature rule was used exclusively to compute the matrix elements. A second

routine, a secant method root search, was used to find the value of ζ that would make

the MoM impedance matrix singular. The null space of the system was found us-

ing Matlab; however, numerical errors produced only a ”nearly singular” impedance

matrix. To ensure the nullspace was not empty, an LU matrix factorization was per-

formed and the value of the N th row and N th column of the resulting reduced matrix

was reset to zero. To verify the correct answer was used to compute the current,

the eigenvector corresponding to the smallest eigenvalue was also used. This process

provided a method to check the accuracy of the integration results. As the precision

of integration improved, the magnitude of the smallest eigenvalue converged to zero

as expected. The numerical results and effort to optimize the code will be discussed

in the following sections.

The algorithms designed to integrate and populate the impedance matrix can be

found in Appendix B. It was designed to be accurate and efficient. A special function

was used to select the upper limit of integration to ensure sufficient convergence was

achieved. As seen in Figure 5.2, the the value for Amn
xx is found to the thousands dec-

imal place. At these large values of ξ, the oscillating integrand is nearly symmetrical

about the ξ-axis and the contribution of the integrand beyond the limits displayed

in Figure 5.2 can be neglected. Similar convergence is expected for the remaining

integrals, since they all converge at the same rate (see equations (5.39)-(5.42)). Effi-

ciency can be improved by exploiting the symmetries of the impedance matrix. The

Amn
xx and Amn

zz quadrants are both diagonally symmetry. Only the diagonal and upper
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Figure 5.1: Cross Sectional Currents Found on a Perfectly
Conducting Center Conductor. These values were found for at
a frequency of 10 MHz for a stripline with 3.46 cm ground plane
spacing and a center conductor 5 cm wide.

off-diagonal terms need to be calculated. The Amn
zx and Amn

xz quadrants are complex

transposes; thus, only values for one of these quadrants needs to be computed. Ex-

ploiting these properties reduces the numbers integrations needed to fill the impedance

matrix from 4(N)4 to 2(N)2 + (N) and reduces the computational time for filling the

matrix by 26 percent. Furthermore, It will be shown in the next chapter that no

more than three expansion terms are needed to accurately compute the characteristic

impedance, producing a 6x6 impedance matrix.

Using the algorithms included in Appendix B, the x and z components of the

current and guided propagation constant were computed. The currents are displayed

in Figure 5.1. As anticipated, the TEM mode is being maintained exclusively by

the longitudinal component of the current (Jz). Furthermore, the distribution of the

current on the strip adheres to well established current behavior [17]. The value of the

computed wave number (ζ = k = ω
√

εµ), agrees with physical intuition, namely that

a forward propagating z-directed wave behaves like e(−jζz), where ζ = β − jα. For
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Figure 5.2: Convergence achieved through special algorithm
(see Appendix B) that selected the optimal upper limit.

PEC boundaries, there are no losses (α = 0) and we have e(−jβz), a pure propagating

wave with no decay. The computed currents and wave number will be used in the

next chapter to calculate the characteristic impedance of the lossless stripline.

5.3 MoM Solution of the Integral Equation for Specialized TEM Case

In Chapter 4, a specialized integral equation was formulated for the TEM mode

of the stripline having a PEC center conductor. It was shown that the generalized

EFIE formulation reduces to the single integral equation (5.52),

a∫

−a

∞∫

−∞

kξ ˜̃Gzz(ξ, k; y0 | y0)e
jξxe−jξx′ J̃sz(x

′)dξdx′, (5.52)

under the condition that ζ = k and J̃sx = 0 (which is consistent with the previous

section). This integral equation can be solved using the expansion and testing func-

tions of the previous section, namely enz(x) and tmx(x). Performing the necessary
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Figure 5.3: Cross Sectional Current, J̃sz, obtained using the
TEM specialization IE for N=3, frequncy=10 MHz.

expansion and testing leads to the matrix equation

N−1∑
n=0

anzA
mn
xz = 0 . . .m = 0, . . . , N − 1 (5.53)

where

Amn
xz =

∞∫

0

˜̃Gzz(ξ, ζ, y0 | y0)J2n(aξ)J2m+2(aξ)dξ. (5.54)

Note, as in the previous section, evenness of the integrand reduces the limits of inte-

gration from (−∞,∞) to (0,∞) and the leading constants were removed due to the

homogeneous nature of the matrix equation.

It is shown in Figure 5.4 that the coupled and specialized equation integral

equations for the TEM mode current J̃sz produce identical results as anticipated.

However, it is noted that the resulting specialized integral equation MoM matrix

contains N2 elements as opposed to 4N2 elements in the coupled IE formulation.

This results a tenfold improvement in computational efficiency.
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VI. Characteristic Impedance

The culmination of the design process is to ensure that the specified stripline de-

sign parameters will produce the required characteristic impedance. In Chapter

2, the ground plane spacing was calculated to provide the necessary operational fre-

quency regime. In addition, an approximate value for the center conductor width was

computed. In this chapter, an expression to compute the characteristic impedance

of the stripline will be developed using the MoM solution obtained in Chapter 5.

This expression will be used to test the accuracy of the proposed center conductor

width. Any essential modifications to the design will be identified. Furthermore, the

physical understanding of stripline characteristic impedance will be supplemented by

viewing the stripline as a pair of parallel capacitors. Using this simplified model will

provide an indication of factors impacting the characteristic impedance of a stripline.

Finally, the effects of center conductor misalignment on characteristic impedance will

be investigated.

6.1 Derivation of Full Wave Expression for the Characteristic Impedance

of a Stripline

In this section, an expression for the characteristic impedance will be developed

using the MoM solution obtained in Chapter 5. An expression for the characteristic

impedance (for a forward traveling wave) of a stripline with PEC ground planes and

an infinitesimally thin PEC center conductor will be calculated using the relation

Zo =
V

I
, (6.1)

where

V = −
∫

C

~E · ~dl . . . C extends from the center conductor to the ground plane (6.2)

47



and

I =

∮

cs

~J · n̂dS. (6.3)

By exploiting the infinite range of the stripline along the guiding axis, z (trans-

forming to the ζ-domain), using a current of the form ~J = ẑJsz(x)δ(y − yo) and se-

lecting the most advantageous path of integration (~dl = ŷdy, n̂ = ẑ and dS = dxdy),

equations (6.3) and (6.2) can be greatly simplified. The remainder of this section will

outline the derivation of the expression used to compute the characteristic impedance.

The spectral version of the characteristic impedance is given by

Z̃o =
Ṽ

Ĩ
(6.4)

where

Ṽ = −
∫

C

~̃E · ~dl . . . C extends from the center conductor to the ground plane (6.5)

and

Ĩ =

∮

cs

~̃J · n̂dS. (6.6)

Substituting ~dl = ŷdy in the expression (6.5) yields

Ṽ = −
∫ y0

h

Ẽs
ydy (6.7)

where

Ẽs
y =

∂

∂y

ζn

ωεµ
Ãs

z(0, y, ζn). (6.8)

48



Using Leibniz’s rule [8], the voltage can be found by evaluating Ãz(0, y, ζn) at the

limits of integration. Recalling that Ãs
z(x, y, ζn) is given by

Ãs
z(x, y, ζn) =

a∫

−a

G̃zz(x, ζ; y0 | y0)µJ̃s
zs(x

′)dx′

=

a∫

−a

1

2π

∞∫

−∞

˜̃Gzz(ξ, ζ; y0 | y0)e
jxξe−jx′ξµJ̃s

zs(x
′)dξdx′. (6.9)

As expected, Ãs
z(0, h, ζn) (the upper boundary) is identically zero. The voltage is

merely − ζ
jωεµ

Ãs
z(0, yo, ζn).

The calculation of Ãs
z(0, yo, ζn) is very straight forward when the results of the

previous chapter are used. Using the expansion of the current defined in Chapter 5,

the voltage is given by

Ṽ =
ζ

jωεµ
Ãz(0, yo, ζn) =

aζn

πωε

N−1∑
n=0

anz

∞∫

−∞

˜̃Gzz(ξ, ζn; y0 | y0)I
e
gnz(ξ)dξ (6.10)

Additionally, the current reduces to

Ĩ = aπaz0 (6.11)

where a is the half-width of the center conductor and az0 is the leading expansion

coefficient for the longitudinal current J̃sz [17].

Substituting the newly found expression for the spectral voltage and current

into (6.4) leads to the follow expression for the characteristic impedance of the lossless

stripline operating in the TEM mode;

Z̃o =

√
µ

π2
√

ε

N−1∑
n=0

anz

a0z

∞∫

0

cosh 2ph− cosh 2pyo

2p sinh 2ph
Ie
gnz(ξ)(ξ)dξ. (6.12)
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Figure 6.1: The Effects of Center Conductor Width on Char-
acteristic Impedance.

This expression will be used to determine the width of the stripline field applicator’s

center conductor and to investigate the effects of center conductor misalignment.

6.2 Validation of AFRL’s Design

Expression (6.12) was evaluated with the approximate physical parameters sup-

plied by AFRL. Letting h = .0173 and a = .025, yielded a characteristic impedance

of 49.76 ohms.

While this is close to the desired value, 50 ohms, some adjustments are war-

ranted. A thinner center conductor will provide a characteristic impedance closer to

the desired value, as seen in Figure 6.1. Re-evaluating expression (6.12) with center

conductor width of 2.496 cm leads to a characteristic impedance of 50.09 ohms. Note,

more precise characteristic impedance can be computed if supported by fabrication
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methods. These results, as will be demonstrated in the next section, correspond with

physical intuition.

6.2.1 Physical Interpretation. To ensure reasonable results were obtained

in the previous section, it is useful to investigate the physical phenomenon of char-

acteristic impedance. In this section, a common approximation for the characteristic

impedance will be used [5, 31]. This approximation will provide excellent results for

TEM mode propagation and give insight into parameters effecting the characteristic

impedance of the stripline [1, 34].

Consider the characteristic impedance of the stripline given by

Z0 =

√
L

C
(6.13)

where L is the inductance per unit length and C is the capacitance per unit length [5].

Substituting the phase velocity, given by

vp =
1√
LC

(6.14)

into the expression (6.13) leads to

Z0 =
1

vpC
=

√
µε

C
(6.15)

where C is the total capacitance of the stripline. Neglecting fringe capacitance, a

stripline can be considered as two capacitors in parallel, C = Cu +Cl, where the total

capacitance is the sum of the capacitance between the center strip and the upper

ground plane (Cu) and the capacitance between the center conductor and the lower

ground plane (Cl). The upper and lower capacitances can be calculated according to

the expression given by

Cβ =
εA

dβ

β = u, l (6.16)
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where dβ is the distance between the the center conductor and the corresponding

ground plane, A is the area of the plates and ε is the permittivity of the material

between the center conductor and the ground planes. It is clear that variations in

the spacing of the ground planes (h) and the width of the center conductor (a) will

influence the characteristic impedance. Increasing the width of the center conductor

increases the area of the capacitors and will decrease the characteristic impedance,

as seen in Figure 6.1. Increasing the spacing between the ground planes increases

the distance between the plates of the capacitors and the characteristic impedance

increases. Insight gained in this section can also provide insight into the effects of

center conductor misalignment.

6.3 Effects of Center Conductor Misalignment

Building on insight gained in the previous section, the effects of center conduc-

tor misalignment will be investigated. First, the capacitor model will be adjusted to

accommodate center conductor misalignment. The physical insight gained through

this process will be used to verify results obtained by computing the characteristic

impedance of the stripline applicator with various levels of center conductor misalign-

ment. Finally, further verification will be accomplished through CEM simulation.

To accommodate center conductor misalignment, the total capacitance of the

stripline can be written as

C = Cu + Cl

=
εA

h− y0

+
εA

h + y0

= εA(
1

h− y0

+
1

h + y0

)

=
εA

h
(

1

1− y0/h
+

1

1 + y0/h
). (6.17)
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When the stripline is perfectly aligned (y0 = 0) the total capacitance is given by

C =
2εA

h
. (6.18)

Similarly, for small degrees of misalignment (y0 << 1) equation(6.19) can be rewritten

as

C =
2εA

h
(

1

1− (y0/h)2
)

=
2εA

h
(1− (

y0

h
)2 + . . .), (6.19)

which reduces to

C =
2εA

h
. (6.20)

Thus, small degrees of center conductor misalignment (y0 ∼ 0) will not strongly

impact the characteristic impedance. Additionally, as the displacement of the center

conductor increases the total capacitance increases and consequently the characteristic

impedance is driven down. This will be demonstrated in the following section as

the characteristic impedance of the stripline is computed at various levels of center

conductor displacement.

The characteristic impedance was computed using expression (6.12) evaluated at

various values of center conductor displacement. When perfectly alignment (y0 = 0),

the characteristic impedance is nearly 50 ohms. As predicted above, the characteristic

impedance of the stripline decreases as the center conductor migrates to the upper

ground plane (see Figures 6.2). However, the characteristic drops more rapidly than

expected, as seen in Figure 6.2. Examination of the electric field for the stripline with

the center conductor located at yo = .5h (see Figure 6.3) reveals that the electric

field lines fringe from the bottom of the center conductor to the upper ground plane,

effectively increasing the area of the fringe capacitors. Thus, the parallel capacitor

model is limited in its ability to predict the effects of center conductor misalignment.

Due to the discrepancies between the expected and computed values of characteristic
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impedance, additional verification of the effects of center conductor misalignment was

obtained through Microwave Studio simulation (see Figure 6.4) [35]. The simulated

and computed results agreed (see Figure 6.2). Thus with confidence, expression (6.12)

predicts the effects of center conductor misalignment.

Expression (6.12) was also evaluated using various numbers of expansion terms.

As seen in Figure 6.5, it is accurate when as few as three expansion terms are used. The

results for the characteristic impedance using more than three expansion terms are

identical. While using two expansion terms provides a close solution, greater accuracy

can be gained by adding more terms. Using a single expansion term (N = 1) or trying

to model the current with a zeroth order Chebsyshev polynomial (constants for both

the first and second kind of Chebsyshev polynomials) results in a poor solution.

6.4 conclusion

In this chapter, a full wave expression was developed to calculate the char-

acteristic impedance of a stripline using the MoM solution obtained in the previous

chapter. It was used to recommend that the width of the center conductor for AFRL’s

stripline field applicator be reduced to 4.992 cm. The change will bring the charac-

teristic impedance closer to the desired 50 ohms. Additionally, the effects on the

characteristic impedance due to center conductor misalignment were examined. As

the center conductor approaches the ground plane the characteristic impedance drops.

However, small variation in center conductor alignment do not strongly influence the

characteristic impedance.
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Figure 6.4: Microwave Studio CAD Model and Simulation
Results.
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VII. Conclusion

In conclusion, this research reviewed the approximate design parameters proposed

for the design of a stripline that will be used to test the electromagnetic proper-

ties of materials at high temperature and low frequency. It began by summarizing

fundamental concepts from transmission theory. The properties of stripline were ex-

amined. Additionally, the stripline design process and a few stripline applications

were presented. It also briefly reviewed recent developments in stripline fabrication.

Next, the vector potential parallel-plate Green’s function for an electric current was

developed using the spectral and spacial vector potential boundary conditions for the

parallel-plate wave guide. The subsequent forced vector potential wave equation was

solved by decomposing the equation into principle and reflective parts. Each part

was then solved independently. Complex analysis was used to find the solution to

the principle part and the reflected part was readily identified as having a harmonic

solution. Boundary conditions were applied to the total solution at the outer conduc-

tors to find the Green’s function. Next, a compact hyperbolic version of the Green’s

function was identified and used to formulate an integral equation for a stripline. A

pair of coupled integral equations were formulated for a stripline having a perfect cen-

ter conductor. Furthermore, it was shown that the coupled integral equation reduce

to a single integral equation for the TEM mode. This specialization naturally led

to a more computationally efficient formulation. Next, the solution of these integral

equations was obtained employing a Galerkin’s-based MoM solution using Chebsy-

shev polynomials as expansion and testing functions. The unknown center conductor

currents and guiding axis propagation constant were then used to formulate an ex-

pression for the characteristic impedance. The expression was used to analyze the

approximate design parameters of AFRL’s stripline field applicator and examine the

effects of center conductor misalignment. It was used to recommend that the center

conductor for AFRL’s stripline field applicator be reduced to 4.992 cm. The change

will bring the characteristic impedance closer to the desired 50 ohms. Additionally, as

the center conductor approaches the ground plane the characteristic impedance drops.
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However, small variation in center conductor alignment do not strongly influence the

characteristic impedance.

7.1 Contributions

This design verification and characteristic impedance understanding will pave

the way in giving Air Force Research Laboratory the capability of measuring shielding

materials at low frequencies and high temperatures.

7.2 Future Research

During this research, much was learned about the behavior of striplines. In spite

of this, much work in this area remains. Adding thickness to the center conductor,

extending the research to striplines that are variant along the guiding axis, replacing

PEC with lossy high temperature alloys and finding an analytical solution for the

integrals encountered while obtaining the method of moments solution would be very

interesting.

Literature indicates that replacing the infinitesimally thin center conductor with

an actual center conductor with finite thickness will improve characteristic impedance

calculation accuracy [10].

This research was limited to uniform center conductor misalignment. Utilizing

non-uniform transmission line theory where the capacitance is dependent on position

may yield insight into non-uniform center conductor alignment.

Facilitating high temperature material characterization measurements necessi-

tates use of high temperature alloys in stripline construction. The conductivity of high

temperatures alloys is significantly lower than the conductivity of traditional room

temperature conductors, as seen in Table 7.1. The effects of a lossy center conductor

on the characteristic impedance and propagating characteristics of the stripline should

be investigated to improve the accuracy of high temperature material characterization

measurements.
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Table 7.1: The conductivity of high temperatures
alloys is significantly lower than the conductivity of
traditional conductors.

Metal Conductivity

Copper 5.9× 107

H-214*( at 2200 deg F) 8.1× 105

H-230*(at 1800 deg F) 7.9× 105

HR-120*(at 2200 deg F) 7.7× 105

H-282*(at 1800 deg F) 7.6× 105

* High temperature alloys produced by Haynes International, Inc.

There has also been success in finding analytical solutions to integral equations

resulting from similar geometries. [12,13,38] An analytical solution using a pole series

expansion or special function could dramatically increase computational efficiency.
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Appendix A. Chebsyshev Polynomials

This appendix lists the expressions and formulas used in evaluating integrals

containing Chebsyshev polynomials encountered in the MoM solution of Integral

Equations. The main reference is [7, 17,33].

Throughout the appendix, Tn(x) will specify a Chebsyshev polynomials of the

first kind of order n. Likewise, Un(x) will indicate a Chebsyshev polynomials of the

second kind of order n.

Chebsyshev polynomials of the first kind were generated using the following

recursive relations, given as

Tn(x) = 2xTn−1(x)− Tn−2(x) (A.1)

A few Chevbsyshev polynomials of the first kind can be given as

T0(x) =1

T1(x) =x

T2(x) =2x2 − 1 (A.2)

T3(x) =4x3 − 3x

T4(x) =8x4 − 8x2 + 1

T5(x) =16x5 − 20x3 + 5x

(A.3)

Chebsyshev polynomials of the second kind were generated using the following

recursive relations, given as

Un(x) = 2xUn−1(x)− Un−2(x) (A.4)
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A few Chevbsyshev polynomials of the second kind can be given as

U0(x) =1

U1(x) =2x

U2(x) =4x2 − 1 (A.5)

U3(x) =8x3 − 4x

U4(x) =16x4 − 12x2 + 1

U5(x) =32x5 − 32x3 + 6x

(A.6)

A.1 Preliminary Expressions

The follow expressions are used to evaluate the integrals involving Chebsyshev

Polynomials encountered in Chapter 5

Tn(−x) = (−1)nTn(x) (A.7)

ejx = cos x + j sin x (A.8)

Tn(cos θ) = cos nθ (A.9)

sin2 θ = 1− cos2 θ (A.10)

sin2 θ =
1− cos 2θ

2
(A.11)

cos A cos B =
1

2
[cos(A + B) + cos(A−B)] (A.12)

sin x =
ejx − e−jx

2j
(A.13)

π

(−j)n
Jn(x) =

∫ π

0

cos nθejx cos θdθ (A.14)

Jn(ãejmπ) = ejmnπJn(ã) . . . m = integer (A.15)
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A.2 Integrals with Chebsyshev Polynomials

Some of the integrals involving Chebsyshev Polynomials encountered in MoM

solutions. Proofs to these integrals are available in literature [7, 17,33].

1∫

0

Tn(x)√
1− x2

cos ãxdx =





(−1)n/2(π/2)Jn(ã) if ã 6= 0 and n = 0, 2, 4 . . .

π
2

if ã = 0 and n = 0

0 if ã = 0 and n = 2, 4 . . .

(A.16)

1∫

0

Un(x)
√

1− x2 sin ãxdx =





(−1)(n−1)/2 (n+1)π
ã

(π/2)Jn+1(ã) if ã 6= 0 and n = 1, 3, 5 . . .

0 if ã = 0 and n = 1, 3, 5 . . .

(A.17)

A.3 Asymptotic Form of Integrals Involving Tn(x) and Un(x)

The above integrals have the following asymptotic behavior

lim
ã→∞

1∫

0

Tn(x)√
1− x2

cos(ãx)dx ∼ cos[ã− π
2
(n + 1

2
)]

ã1/2
. . . n = 0, 2, 4 . . . (A.18)

lim
ã→∞

1∫

0

Un(x)
√

1− x2 sin ãxdx ∼ cos[ã− π
2
(n + 3

2
)]

ã3/2
. . . n = 1, 3, 5 . . . (A.19)

A.4 Evaluation of Integrals Encountered in Chapter 5

The following integrals were encountered will trying to find a MoM solution

to CIE formulated in Chapter 4. These integrals involve the Galerkin based MoM

solution using Chebsyshev polynomials of the first kind as expansion functions.
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A.4.1 Evaluating fmx(ξ) and gnx(ξ) of The First Expansion/Test Function Set.

fmx(ξ) =

∫ a

−a

T2m+1(
x

a
)

√
1− (

x

a
)2ejxξdx (A.20)

expanding the exponential using (A.8) yields

fmx(ξ) =

∫ a

−a

T2m+1(
x

a
)

√
1− (

x

a
)2 cos xξdx + j

∫ a

−a

T2m+1(
x

a
)

√
1− (

x

a
)2 sin xξdx

(A.21)

The first term on the right hand side of the expression above vanishes because the

integrand is odd leading to

fmx(ξ) = j

∫ a

−a

T2m+1(
x

a
)

√
1− (

x

a
)2 sin xξdx (A.22)

performing a change of variable, where x̃ = x
a

leads to

fmx(ξ) = aj

∫ 1

−1

T2m+1(x̃)
√

1− (x̃)2 sin ax̃ξdx̃ (A.23)

performing a second change of variable where x̃ = cos θ yields

fmx(ξ) = −aj

∫ 0

π

T2m+1(cos θ)
√

1− (cos θ)2 sin θ sin(a cos θξ)dθ (A.24)

which can be rewritten as

fmx(ξ) = aj

∫ π

0

T2m+1(cos θ)
√

1− (cos θ)2 sin θ sin(a cos θξ)θ (A.25)

substituting (A.16) into the equation above and using (A.10) leads to

fmx(ξ) = aj

∫ π

0

cos[(2m + 1)θ] sin2 θ sin(a cos θξ)dθ (A.26)
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expanding the sin2 θ according to (A.11) leads to

fmx(ξ) =
aj

2

∫ π

0

cos[(2m + 1)θ](1− cos 2θ) sin(a cos θξ)dθ (A.27)

which can be rewritten as

fmx(ξ) =
aj

2

∫ π

0

cos[(2m + 1)θ] sin(a cos θξ)dθ

−aj

2

∫ π

0

cos[(2m + 1)θ] cos 2θ sin(a cos θξ)dθ (A.28)

using the identity (A.12) will yield

fmx(ξ) =
aj

2

∫ π

0

cos[(2m + 1)θ] sin(a cos θξ)dθ

−aj

4

∫ π

0

cos[(2m + 3)θ] sin(a cos θξ)dθ

−aj

4

∫ π

0

cos[(2m− 1)θ] sin(a cos θξ)dθ (A.29)

expanding the sin function according to the definition (A.13) leads to

fmx(ξ) =
a

4

∫ π

0

cos[(2m + 1)θ]ej(a cos θξ)dθ

−a

4

∫ π

0

cos[(2m + 1)θ]e−j(a cos θξ)dθ

−a

8

∫ π

0

cos[(2m + 3)θ]ej(a cos θξ)dθ

+
a

8

∫ π

0

cos[(2m + 3)θ]e−j(a cos θξ)dθ

−a

8

∫ π

0

cos[(2m− 1)θ]ej(a cos θξ)dθ

+
a

8

∫ π

0

cos[(2m− 1)θ]e−j(a cos θξ)dθ (A.30)

66



using (A.14) leads to

fmx(ξ) =
aπ

4(−j)2m+1
J2m+1(aξ)

− aπ

4(−j)2m+1
J2m+1(−aξ)

− aπ

8(−j)2m+3
J2m+3(aξ)

+
aπ

8(−j)2m+3
J2m+3(−aξ)

− aπ

8(−j)2m−1
J2m−1(aξ)

+
aπ

8(−j)2m−1
J2m−1(−aξ)dx (A.31)

which, using (A.15) can be rewritten as

fmx(ξ) =
jaπ

2(−j)2m
[J2m+1(aξ) +

1

2
(J2m+3(aξ) + J2m−1(aξ))] (A.32)

a similar process processes yields the following results for gnx(ξ) where

gnx(ξ) =
−jaπ

2(−j)2n
[J2n+1(aξ) +

1

2
(J2n+3(aξ) + J2n−1(aξ))] (A.33)

A.4.2 Evaluating fmz(ξ) and gnz(ξ) of The First Expansion/Test Function Set.

fmz(ξ) =

∫ a

−a

T2m(x
a
)√

1− (x
a
)2

ejxξdx (A.34)

expanding the exponential using (A.8) yields

fmz(ξ) =

∫ a

−a

T2m(x
a
)√

1− (x
a
)2

cos xξdx + j

∫ a

−a

T2m(x
a
)√

1− (x
a
)2

sin xξdx (A.35)

The second term on the right hand side of the expression above vanishes because the

integrand is odd leading to

fmz(ξ) =

∫ a

−a

T2m(x
a
)√

1− (x
a
)2

cos xξdx (A.36)
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performing a change of variable, where x̃ = x
a

leads to

fmz(ξ) = aj

∫ 1

−1

T2m(x
a
)√

1− (x
a
)2

cos ax̃ξdx (A.37)

using (A.16) leads to

fmz(ξ) =





(−1)m(π/2)J2m(aξ) if a, ξ 6= 0 and m = 0, 1, 2 . . .

π
2

if a, ξ = 0 and m = 0

0 if a, ξ = 0 and m = 1, 2 . . .

(A.38)

a similar process processes yields Identical following results for gnz(ξ).

The following relations were used to analyze the behavior of the integrands as

ξ →∞ and as ξ → 0

lim
ã→∞

Jn(ã) =

√
2

πã
cos(ã− (n +

1

2
)
π

2
) (A.39)

lim
ã→∞

1∫

0

Tn(x)√
1− x2

cos(ãx)dx ∼ cos[ã− (n + 1
2
)π

2
]

ã1/2
(A.40)
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Appendix B. Matlab Code

This appendix contains all the code used to seek a method of moments solution

as described in Chapter5. It is based on code developed by Captain Milo Hyde.

Listing B.1: Method of Moment Solution for Coupled Integral Equation.
(appendix3/PropagationConstantSearchChebyCheby12.m)

1 function [prop_const , iter , impedMat , error ,Jx ,...
Jz] = PropagationConstantSearchChebyCheby12(freq , h,...
y_o ,tol , W, n, maxIter)

% Based on code developed by Cpt Milo Hyde

6 % PropagationConstantSearchChebyCheby uses a secant search
% to find the propagation constant of a stripline(Fig -1). The
% algorithm expands and tests the currents on the stripline ’s
% center conductor using weighted Chebyshev polynomials of the
% 1st kind. The initial guess of the algorithm is the free

11 % space wavenumber , k0. The algorithm also returns the number
% of iterations it took to reach a solution , the impedance
% matrix , the error , the currents on the stripline ’s center
% conductor , Jx and Jz , and the characteristic
% impedance , Zc , assuming quasi -TEM , Jx = 0.

16 %
% Fig -1
%
% //////////////////// PEC /////////////////////////////
% ----------------------------------------------------- y = h

21 % (eo ,uo)
% |-- 2a --|
% ----------- y = 0
%
%

26 % ------------------------------------------------------ y = -h
% //////////////////// PEC //////////////////////////////
%
% freq = frequency of operation in HERTZ

31
% h=half seperation of plates
% tol = tolerance of iterative root search
% W = half width of center conductor in METERS (a)
% n = order of Chebyshev polynomial basis functions

36 % maxIter = max number of Newton -Raphson iterations
%

warning off MATLAB:m_warning_end_without_block

41 e1 =8.8541878176e-12; %F/m ,free space permitivity
u1 = 4*pi*10^ -7; %H/m permiability
eu1=[e1 u1];
k1 = 2*pi*freq*sqrt(e1*u1);
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46 k = k1;

iter = 2;

del_k=tol*k;
51 k2=k+del_k;

[A B] = DetImpedMatrix(k, 0, h, W, n, eu1 , freq , tol ,y_o);
detA = A;
[A B] = DetImpedMatrix(k2, 0, h, W, n, eu1 , freq , tol ,y_o);
detA2=A;

56 while iter <maxIter
p=k2-detA2 *(k2-k)/(detA2 -detA);
if abs(p-k)<tol

prop_const=p;
impedMat = B;

61 break;
end
iter=iter +1;
k=k2;
detA=detA2;

66 k2=p;
[A B] = DetImpedMatrix(p, 0, h, W, n, eu1 , freq , tol ,y_o);
detA2 = A;

end
if iter == maxIter

71 disp(’Max number of iterations reached ’);
end
error = abs(detA2*(k2 -k)/(detA2 -detA));

[Jx, Jz] = PlotCurrents(impedMat , W, n);
76

end

function [A, B] = DetImpedMatrix(k, del_k , h, W, n, eu1 , freq , tol...
,y_o)

%
81 % [A, B] = DetImpedMatrix(k, del_k , l, d, W, n, eu1 , eu2 , freq , ...

tol)
%
% DetImpedMatrix returns the determinant of the impedance
% matrix describing the currents on the center conductor of
% the stripline. It also returns the impedance matrix.

86 %
% k = propagation constant of stripline
% del_k = propagation constant step for forward difference ...

calculation
% h= half the distance between parallel plates
% W = length of center conductor in METERS

91 % n = order of Chebyshev polynomial basis functions
% eu1 = vector containing permittivity and permeability
% freq = frequency of operation in HERTZ
% tol = tolerance of iterative root search
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%
96

e1 = eu1 (1); u1 = eu1 (2);

k1 = 2*pi*freq*sqrt(e1*u1);

101 k = k + del_k;
[A, B, C, D] = EvaluateIntsFormMatrices(k, n, h, W, k1 , e1 , u1 , ...

tol ,y_o);
B = [A B;

C D];
A = det(B);

106 end

function [A, B, C, D] = EvaluateIntsFormMatrices(k, n, h, W, k1 , ...
e1, u1 ,...
tol ,y_o)

%
111 % [A, B, C, D] = EvaluateIntsFormMatrices(k, n, h, W, k1 , e1 , u1 , ...

tol ,y_o)
%
% EvaluateIntegralsFromMatrices evaluates xi numerical
% integrals and forms the submatrices.
%

116 % k = propagation constant of stripline
% n = order of Chebyshev polynomial basis functions
% h = half spacing of the groundplanes in METERS
% W = length of center conductor in METERS
% k1 = wavenumber of layer

121 % e1 = permittivity
% u1 = permeability
% tol = tolerance of iterative root search
% y_o = location of center conductor
%

126
%%%%% Integration Limits and Tolerance %%%%%
subdiv = 400; % Number of Subdivisions on Xi Integration ...

Interval
[limitsXi , tol] = FindIntegrationLimits(k, h, k1 , tol , subdiv ,y_o)...

;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

131
for i_test = 0:n - 1

for i_basis = 0:n - 1
args = [k W i_test i_basis h k1 e1 u1 y_o ];
for m = 1: length(limitsXi) - 1

136 A1small =(2*1e-4^2 -4*1e -4^5) -(2*1e-10^2 -4*1e -10^5);
A1temp(m) = quadl(@EvalIntA1 ,limitsXi(m),limitsXi(m+1)...

,tol ,...
0,args);

B1small =(2*1e -4^3) -(2*1e -10^3);
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141 B1temp(m) = quadl(@EvalIntB1 ,limitsXi(m),limitsXi(m+1)...
,tol ,...
0,args);

D1temp(m) = quadl(@EvalIntD1 ,limitsXi(m),limitsXi(m+1)...
,tol ,...
0,args);

146 end
A(i_test+1,i_basis +1) = sum(A1temp)+A1small;
B(i_test+1,i_basis +1) = sum(B1temp)+B1small;
D(i_test+1,i_basis +1) = sum(D1temp);

end
151 end

C=B’;
end

function [limitsXi , tol] = FindIntegrationLimits(k, h, k1 , tol , ...
subdiv ,y_o)

156 %
% [limitsXi , tol] = FindIntegrationLimits(k, h, k1 , tol , subdiv ,...

y_o)
%
% FindIntegrationLimits finds where the Green ’s function
% becomes NaN. It returns the new xi spectral integral

161 % integration limits and returns an adjusted integration
% tolerance.
%
% k = propagation constant of stripline
% n = order of Chebyshev polynomial basis functions

166 % h = half spacing of the groundplanes in METERS
% W = length of center conductor in METERS
% k1 = wavenumber of layer
% e1 = permittivity
% u1 = permeability

171 % tol = tolerance of iterative root search
% y_o = location of center conductor
% subdiv = number of subdivision on xi integration interval
%

176 tol = tol*1e-6;

xi = 1:1e5;
p1 = sqrt(xi.^2 + k^2 - k1^2);

181
G1=(cosh (2*p1*h)-cosh (2*p1*y_o))./(p1.*sinh (2*p1*h));

indexNaN1 = find(isnan(G1));
186 indexZero1 = find(G1==0);

if isempty(indexNaN1) && ~isempty(indexZero1)
xi_end1 = indexZero1 (1) - 1;
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elseif ~isempty(indexNaN1) && isempty(indexZero1)
xi_end1 = indexNaN1 (1) - 1;

191 elseif ~isempty(indexNaN1) && ~isempty(indexZero1)
if indexNaN1 (1) < indexZero1 (1)

xi_end1 = indexNaN1 (1) - 1;
else

if indexZero1 (1) == 1
196 xi_end1 = indexNaN1 (1) - 1;

else
xi_end1 = indexZero1 (1) - 1;

end
end

201 else
xi_end1 = xi(end);

end

limitsXi (:,1) = linspace (1e-4,xi(xi_end1),subdiv);
206

end

function [Jx , Jz] = PlotCurrents(impedMat , W, n)
%

211 % [Jx , Jz] = PlotCurrents(impedMat , W, n)
%
% PlotCurrents plots the electric currents on the stripline ’s ...

center
% conductor , Jx and Jz. It also returns Jx and Jz.
%

216 % impedMat = impedance matrix of stripline environment
% W = length of center conductor in METERS
% n = order of Chebyshev polynomial basis functions
%

221 warning off MATLAB:divideByZero

x = linspace(-W/2,W/2 ,1000);
[L,U,P] = lu(impedMat);
U(end ,end) = 0;

226 b = inv(P)*L*U;
as_bs = null(b,’r’);
as = as_bs (1:n);
bs = as_bs(n+1: end);

231 U = ChebyU(n);
T = ChebyT(n);

%%%%% Creating Polynomial Representation of Currents %%%%%
236 k = 1;

for i = 1:2: length(T(:,1))
Jz(k,:) = bs(k)*T(i,:);
k = k + 1;
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end
241 Jz = sum(Jz);

k = 1;
for i = 2:2: length(U(:,1))

Jx(k,:) = as(k)*U(i,:);
k = k + 1;

246 end
Jx = sum(Jx);
Jx = polyval(Jx ,2*x/W).*sqrt (1 -(2*x/W).^2);
Jz = polyval(Jz ,2*x/W)./sqrt (1 -(2*x/W).^2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

251 %%%%% Getting Rid of Inf for Normalization %%%%%
Jztemp = Jz;
Jztemp (1) = ’’;
Jztemp(end) = ’’;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

256 JzMag = abs(Jz)/max(abs(Jztemp));
JxMag = abs(Jx)/max(abs(Jztemp));
figure;
plot (2*x/W,JzMag ,’-b’,’Linewidth ’ ,2);
hold on;

261 plot (2*x/W,JxMag ,’-.r’,’Linewidth ’ ,2);
xlabel(’Location (2x/W)’,’fontsize ’,12,’fontweight ’,’bold’);
ylabel(’Relative Surface Current Magnitude , J_z & J_x’,’fontsize ’...

,12,...
’fontweight ’,’bold’);

legend(’J_z’,’J_x’);
266 if mod(n-1,10) == 1

title_str = [num2str(n-1) ’^s^t Order Chebyshev Polynomial ...
Expansion ’];

elseif mod(n,10) == 2
title_str = [num2str(n-1) ’^n^d Order Chebyshev Polynomial ...

Expansion ’];
elseif mod(n,10) == 3

271 title_str = [num2str(n-1) ’^r^d Order Chebyshev Polynomial ...
Expansion ’];

else
title_str = [num2str(n-1) ’^t^h Order Chebyshev Polynomial ...

Expansion ’];
end
title(title_str ,’fontsize ’,12,’fontweight ’,’bold’);

276 axis tight;
grid on;

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

281 %%%%%%%%%%%%%%%%%%%%%%%% Integrals %%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function A = EvalIntA1(xi , args)

k = args (1);
286 W = args (2); h = args (5);
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i_test = args (3); i_basis = args (4);
k1 = args (6);
y_o=args (9);

291
p1 = sqrt(xi.^2 + k^2 - k1^2);

G1=(cosh (2*p1*h)-cosh (2*p1*y_o))./(p1.*sinh (2*p1*h));

296 I1=-j*(-1)^i_basis *((( i_basis +1)*pi)./(W*xi)).*( besselj (2* i_basis...
+2,xi*W));

I3=j*(-1)^i_test *((( i_test +1)*pi)./(W*xi)).*( besselj (2* i_test+2,xi...
*W));

A = (k1^2 - xi.^2).*G1.*I1.*I3;
301 end

function A = EvalIntB1(xi , args)
k = args (1);
W = args (2); h = args (5);

306 i_test = args (3); i_basis = args (4);
k1 = args (6);
y_o=args (9);

311 p1 = sqrt(xi.^2 + k^2 - k1^2);

G1=(cosh (2*p1*h)-cosh (2*p1*y_o))./(p1.*sinh (2*p1*h));
I2 = (-1)^i_basis*pi/2* besselj (2* i_basis ,xi*W);
I3 = j*(-1)^i_test *((( i_test +1)*pi)./(W*xi)).*( besselj (2* i_test+2,...

xi*W));
316

A = -k*G1.*xi.*I2.*I3;
end

function A = EvalIntC1(xi , args)
321 k = args (1);

W = args (2); h = args (5);
i_test = args (3); i_basis = args (4);
k1 = args (6);
y_o=args (9);

326
p1 = sqrt(xi.^2 + k^2 - k1^2);
G1=(cosh (2*p1*h)-cosh (2*p1*y_o))./(p1.*sinh (2*p1*h));
I1=-j*(-1)^i_basis *((( i_basis +1)*pi)./(W*xi)).*( besselj (2* i_basis...

+2,xi*W));
I4=(-1)^i_test*pi/2* besselj (2* i_test ,xi*W);

331
A = -k*G1.*xi.*I1.*I4;
end
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function A = EvalIntD1(xi , args)
336 k = args (1);

W = args (2); h = args (5);
i_test = args (3); i_basis = args (4);
k1 = args (6);
y_o=args (9);

341
p1 = sqrt(xi.^2 + k^2 - k1^2);
G1=(cosh (2*p1*h)-cosh (2*p1*y_o))./(p1.*sinh (2*p1*h));
I2 = (-1)^i_basis*pi/2* besselj (2* i_basis ,xi*W);
I4 = (-1)^i_test*pi/2* besselj (2*i_test ,xi*W);

346
A = (k1^2 - k^2)*G1.*I2.*I4;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
351 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Listing B.2: Method of Moment Solution for TEM Specialized Case.
(appendix3/TEMChebyCheby12.m)
function [impedMat ,Jz] = TEMChebyCheby12(freq , h, y_o ,tol , W, n)
% based on code developed by Cpt Milo Hyde

3 %
%
% TEMChebyCheby12 finds the the longitudinal current on the center...

strip
% of a stripline (Fig -1). It implements a method of moment ...

solution that
% expands and tests the currents on the stripline ’s center ...

conductor using
8 % weighted Chebyshev polynomials of the 1st kind. The algorithm ...

also
% returns the impedance matrix , the error and the longitudinal ...

currents
% on the stripline ’s center conductor , Jz; assuming quasi -TEM , Jx ...

= 0.
%
% Fig -1

13 %
% //////////////////// PEC /////////////////////////////
% ----------------------------------------------------- y = h
% (eo ,uo)
% |-- 2a --|

18 % ----------- y = 0
%
%
% ------------------------------------------------------ y = -h
% //////////////////// PEC //////////////////////////////

23 %
% freq = frequency of operation in HERTZ
% h=half seperation of plates

76



% tol = tolerance of iterative root search
% W = length of center conductor in METERS

28 % n = order of Chebyshev polynomial basis functions
%

warning off MATLAB:m_warning_end_without_block

33 e1 = 8.8541878176e-12; % F/m (or C2N -1m-2), free space ...
permitivity

u1 = 4*pi*10^ -7; %H/m (or T m /A) [1] permiability
eu1=[e1 u1];

[A B] = DetImpedMatrix(h, W, n, y_o , eu1 , freq , tol);
38

impedMat = B;
[Jz] = PlotCurrents(impedMat , W, n);

end
43

function [A, B] = DetImpedMatrix(h, W, n, y_o , eu1 , freq , tol)
%
% [A, B] = DetImpedMatrix(k, del_k , l, d, W, n, eu1 , eu2 , freq , ...

tol)
%

48 % DetImpedMatrix returns the determinant of the impedance matrix ...
describing

% the currents on the center conductor of the stripline. It also ...
returns

% the impedance matrix.
%
% freq = frequency of operation in HERTZ

53 % h=half seperation of plates
% tol = tolerance of iterative root search
% W = length of center conductor in METERS
% n = order of Chebyshev polynomial basis functions
%

58
e1 = eu1 (1); u1 = eu1 (2);

k = 2*pi*freq*sqrt(e1*u1);

63 [B] = EvaluateIntegralsFormMatrices(k, n, h, y_o ,W, e1 , u1 , tol);

A = det(B);
end

68 function [B] = EvaluateIntegralsFormMatrices(k, n, h, y_o ,W, e1 , ...
u1, tol)

%
% [A, B, C, D] = EvaluateIntegralsFormMatrices(k, n, h, y_o ,W, e1,...

u1 , tol)
%
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% EvaluateIntegralsFromMatrices evaluates xi numerical integrals ...
and forms

73 % the submatrices.
%
% freq = frequency of operation in HERTZ
% h=half seperation of plates
% tol = tolerance of iterative root search

78 % W = length of center conductor in METERS
% n = order of Chebyshev polynomial basis functions
%

%%%%% Integration Limits and Tolerance %%%%%
83 subdiv = 400; % Number of Subdivisions on Xi Integration ...

Interval
k1=k;
[limitsXi , tol] = FindIntegrationLimits(k, h, k1 , tol , subdiv);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%limitsXilarge=linspace(limitsXi(end) ,100000, subdiv);

88 %limitsXi=linspace (1e-4 ,150000 , subdiv);
for i_test = 0:n - 1

for i_basis = 0:n - 1
args = [k W i_test i_basis h e1 u1 y_o ];
for m = 1: length(limitsXi) - 1

93 B1small =(2*1e -4^3) -(2*1e -10^3);
B1temp(m) = quadl(@EvalIntB1 ,limitsXi(m),limitsXi(m+1)...

,...
tol ,0,args);

end

98 B(i_test+1,i_basis +1) = sum(B1temp)+B1small;

end
end

103 end

function [limitsXi , tol] = FindIntegrationLimits(k, h, k1 , tol , ...
subdiv)

%
% [limitsXi , tol] = FindIntegrationLimits(k, l, d, k1 , k2 , e1 , u1,...

e2 , u2 , tol , subdiv)
108 %

% FindIntegrationLimits finds where the Green ’s function becomes ...
NaN. It

% returns the new xi spectral integral integration limits and ...
returns an

% adjusted integration tolerance.
%

113 % freq = frequency of operation in HERTZ
% h=half seperation of plates
% tol = tolerance of iterative root search
% W = length of center conductor in METERS
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% n = order of Chebyshev polynomial basis functions
118 %

%

tol = tol*1e-6;

123 xi = 1:1e5;
p1 = sqrt(xi.^2 + k^2 - k1^2);

G1=(cosh (2*p1*h)-cosh (2*p1*0))./(p1.*sinh (2*p1*h));
128

indexNaN1 = find(isnan(G1));
indexZero1 = find(G1==0);
if isempty(indexNaN1) && ~isempty(indexZero1)

133 xi_end1 = indexZero1 (1) - 1;
elseif ~isempty(indexNaN1) && isempty(indexZero1)

xi_end1 = indexNaN1 (1) - 1;
elseif ~isempty(indexNaN1) && ~isempty(indexZero1)

if indexNaN1 (1) < indexZero1 (1)
138 xi_end1 = indexNaN1 (1) - 1;

else
if indexZero1 (1) == 1

xi_end1 = indexNaN1 (1) - 1;
else

143 xi_end1 = indexZero1 (1) - 1;
end

end
else

xi_end1 = xi(end);
148 end

limitsXi (:,1) = linspace (1e-4,xi(xi_end1),subdiv);

end
153

function [Jz] = PlotCurrents(impedMat , W, n)
%
% [Jz] = PlotCurrents(impedMat , W, n)

158 %
% PlotCurrents plots the electric currents on the stripline ’s ...

center
% conductor , Jz. It also returns Jx and Jz.
%
% impedMat = impedance matrix of stripline environment

163 % W = length of center conductor in METERS
% n = order of Chebyshev polynomial basis functions
%

warning off MATLAB:divideByZero
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168
x = linspace(-W/2,W/2 ,1000);
[L,U,P] = lu(impedMat);
U(end ,end) = 0;
b = inv(P)*L*U;

173 as = null(b,’r’);

U = ChebyU(n);
178 T = ChebyT(n);

%%%%% Creating Polynomial Representation of Currents %%%%%
k = 1;

183 for i = 1:2: length(T(:,1))
Jz(k,:) = as(k)*T(i,:);
k = k + 1;

end
Jz = sum(Jz);

188
Jz = polyval(Jz ,2*x/W)./sqrt (1 -(2*x/W).^2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Getting Rid of Inf for Normalization %%%%%
Jztemp = Jz;

193 Jztemp (1) = ’’;
Jztemp(end) = ’’;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
JzMag = abs(Jz)/max(abs(Jztemp));

198 set(0, ’defaulttextinterpreter ’, ’latex’);
f = figure (2); plot (2*x/W, JzMag , ’LineWidth ’, 2);
set(gca , ’Units’, ’Inches ’, ’OuterPosition ’, [0 0.5 5 0.5+2]);
set(f, ’Units’, ’Inches ’, ’PaperPosition ’, [1 1 5 4]);
grid(’on’);

203 xlabel(’\centerline{Location (2x/W)}’, ’FontSize ’, 12);
ylabel(’Relative Surface Current Magnitude , J_z ’, ’FontSize ’, 12)...

;
title ({’\centerline{Current through }’; ’\centerline{TEM ...

Specialization}’}, ’FontSize ’, 12);
set(gca , ’fontname ’, ’times’);
print(’-depsc’, ’TEMcurrent ’);

208
end

%...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...

%%%%%%%%%%%%%%%%%%%%%%%% Integrals ...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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213 %...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...

function A = EvalIntB1(xi , args)

k = args (1);
218 W = args (2); h = args (5);

i_test = args (3); i_basis = args (4);
k1 = args (1);
y_o=args (8);

223
p1 = sqrt(xi.^2 + k^2 - k1^2);
G1=(cosh (2*p1*h)-cosh (2*p1*y_o))./(p1.*sinh (2*p1*h));
I2=(-1)^i_basis*pi/2* besselj (2* i_basis ,xi*W);%gz
I3=j*(-1)^i_test *((( i_test +1)*pi)./(W*xi)).*( besselj (2* i_test+2,xi...

*W));%fx
228

A = -k*G1.*xi.*I2.*I3;
end

233 %...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...

%...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...

%...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%...

Listing B.3: Algorithm for computing Chebsyshev Polynomials of the First Kind
(appendix3/ChebyT.m)
function [T] = ChebyT(n)
%%%%% Generates Chebyshev Polynomials of the 1st Kind %%%%%
T = zeros (2*n,2*n);
for i = 0:2*n - 1

5 if i == 0
T(1,2*n) = 1;

elseif i == 1
T(2,2*n-1) = 1;

else
10 T(i+1,:) = 2* circshift(T(i,:) ,[0 -1]) - T(i-1,:);

end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Listing B.4: Algorithm for computing Chebsyshev Polynomials of the Second Kind
(appendix3/ChebyU.m)
function [T] = ChebyU(n)

2 %%%%% Generates Chebyshev Polynomials of the 1st Kind %%%%%
T = zeros (2*n,2*n);
for i = 0:2*n - 1

if i == 0
T(1,2*n) = 1;

7 elseif i == 1
T(2,2*n-1) = 2;

else
T(i+1,:) = 2* circshift(T(i,:) ,[0 -1]) - T(i-1,:);

end
12 end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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